Nutrient provision capacity of alternative livestock farming systems per area of arable farmland required

Clinical Trials & Research
  • 1.

    Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Chang. 6, 452–461 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 2.

    Soussana, J. F. et al. Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agr. Ecosyst. Environ. 121, 121–134 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Soussana, J. F., Tallec, T. & Blanfort, V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 4, 334–350 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 4.

    de Oliveira Silva, R. et al. Increasing beef production could lower greenhouse gas emissions in Brazil if decoupled from deforestation. Nat. Clim. Change 6, 493–497 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Phalan, B., Ripple, W. J. & Smith, P. Increasing beef production won’t reduce emissions. Glob. Change Biol. 22, 3255–3256 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Smith, P. Do grasslands act as a perpetual sink for carbon?. Glob. Change Biol. 20, 2708–2711 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 7.

    de Vries, M. & de Boer, I. J. M. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 128, 1–11 (2010).

    Article 

    Google Scholar
     

  • 8.

    Ripple, W. J. et al. Ruminants, climate change and climate policy. Nat. Clim. Chang. 4, 2–5 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 10.

    Berners-Lee, M., Hoolohan, C., Cammack, H. & Hewitt, C. N. The relative greenhouse gas impacts of realistic dietary choices. Energy Policy 43, 184–190 (2012).

    Article 

    Google Scholar
     

  • 11.

    Scarborough, P. et al. Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Clim. Change 125, 179–192 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 12.

    Springmann, M., Godfray, H. C. J., Rayner, M. & Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl. Acad. Sci. U.S.A. 113, 4146–4151 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    van Kernebeek, H. R. J., Oosting, S. J., van Ittersum, M. K., Bikker, P. & de Boer, I. J. M. Saving land to feed a growing population: Consequences for consumption of crop and livestock products. Int. J. Life Cycle Assess. 21, 677–687 (2016).

    Article 

    Google Scholar
     

  • 14.

    Mottet, A. et al. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 14, 1–8 (2017).

    Article 

    Google Scholar
     

  • 15.

    White, R. R. & Hall, M. B. Nutritional and greenhouse gas impacts of removing animals from US agriculture. Proc. Natl. Acad. Sci. U.S.A. 114, E10301–E10308 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 16.

    Leinonen, I. et al. Lysine supply is a critical factor in achieving sustainable global protein economy. Front. Sustain. Food Syst. 3, 27 (2019).

    Article 

    Google Scholar
     

  • 17.

    Wilkinson, J. M. Re-defining efficiency of feed use by livestock. Animal 5, 1014–1022 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 18.

    Ertl, P., Knaus, W. & Zollitsch, W. An approach to including protein quality when assessing the net contribution of livestock to human food supply. Animal 10, 1883–1889 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 19.

    Takahashi, T. et al. Roles of instrumented farm-scale trials in trade-off assessments of pasture-based ruminant production systems. Animal 12, 1766–1776 (2018).

    Article 

    Google Scholar
     

  • 20.

    Flachowsky, G., Meyer, U. & Südekum, K. Land use for edible protein of animal origin: A review. Animals 7, 25 (2017).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 21.

    Drewnowski, A. & Fulgoni, V. L. Nutrient density: Principles and evaluation tools. Am. J. Clin. Nutr. 99, 1223S-1228S (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 22.

    McAuliffe, G. A., Takahashi, T. & Lee, M. R. F. Applications of nutritional functional units in commodity-level life cycle assessment (LCA) of agri-food systems. Int. J. Life Cycle Assess. 25, 208–221 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • 23.

    Ripoll-Bosch, R., de Boer, I. J. M., Bernués, A. & Vellinga, T. V. Accounting for multi-functionality of sheep farming in the carbon footprint of lamb: A comparison of three contrasting Mediterranean systems. Agric. Syst. 116, 60–68 (2013).

    Article 

    Google Scholar
     

  • 24.

    O’Brien, D., Bohan, A., McHugh, N. & Shalloo, L. A life cycle assessment of the effect of intensification on the environmental impacts and resource use of grass-based sheep farming. Agric. Syst. 148, 95–104 (2016).

    Article 

    Google Scholar
     

  • 25.

    McAuliffe, G. A., Takahashi, T. & Lee, M. R. F. Framework for life cycle assessment of livestock production systems to account for the nutritional quality of final products. Food Energy Secur. 7, e00143 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 26.

    Lee, M. R. F. et al. The potential of silage lactic acid bacteria derived nano-selenium as a dietary supplement in sheep. Anim. Prod. Sci. 59, 1999–2009 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Puillet, L. & Tichit, M. Biens produits par l’écosystème. In Volet écosystèmes agricoles de l’evaluation Française des ecosystèmes et des services ecosystémiques (eds Therond, O. et al.) 693–894 (Institut National de la Recherche Agronomique, 2017).


    Google Scholar
     

  • 28.

    Wilkinson, J. M. & Lee, M. R. F. Use of human-edible animal feeds by ruminant livestock. Animal 12, 1735–1743 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 29.

    Battese, G. E. & Coelli, T. J. Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. J. Prod. Anal. 3, 153–169 (1992).

    Article 

    Google Scholar
     

  • 30.

    Corong, E. L., Hertel, T. W., Mcdougall, R. A., Tsigas, M. E. & van der Mensbrugghe, D. The standard GTAP Model, Version 7. J. Glob. Econ. Anal. 2, 1–119 (2017).


    Google Scholar
     

  • 31.

    Springmann, M. et al. Mitigation potential and global health impacts from emissions pricing of food commodities. Nat. Clim. Chang. 7, 69–74 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Abadie, L. M., Galarraga, I., Milford, A. B. & Gustavsen, G. W. Using Food taxes and subsidies to achieve emission reduction targets in Norway. J. Clean. Prod. 134, 280–297 (2016).

    Article 

    Google Scholar
     

  • 33.

    García-Muros, X., Markandya, A., Romero-Jordán, D. & González-Eguino, M. The distributional effects of carbon-based food taxes. J. Clean. Prod. 140, 996–1006 (2017).

    Article 

    Google Scholar
     

  • 34.

    Säll, S. Environmental food taxes and inequalities: Simulation of a meat tax in Sweden. Food Policy 74, 147–153 (2018).

    Article 

    Google Scholar
     

  • 35.

    van Dooren, C., Keuchenius, C., de Vries, J. H. M., de Boer, J. & Aiking, H. Unsustainable dietary habits of specific subgroups require dedicated transition strategies: Evidence from the Netherlands. Food Policy 79, 44–57 (2018).

    Article 

    Google Scholar
     

  • 36.

    Clark, M. A., Springmann, M., Hill, J. & Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl. Acad. Sci. U.S.A. 116, 23357–23362 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 37.

    FAO. Meat & meat products. http://www.fao.org/ag/againfo/themes/en/meat/background.html (2014).

  • 38.

    OECD/FAO. OECD-FAO Agricultural Outlook 2019–2028. https://doi.org/10.1787/agr_outlook-2019-en (2019).

  • 39.

    Eshel, G. et al. A model for ‘sustainable’ US beef production. Nat. Ecol. Evol. 2, 81–85 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • 40.

    Willett, W. et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 41.

    Li, S. & Kallas, Z. Meta-analysis of consumers’ willingness to pay for sustainable food products. Appetite 163, 105239 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • 42.

    Asvatourian, V., Craig, T., Horgan, G. W., Kyle, J. & Macdiarmid, J. I. Relationship between pro-environmental attitudes and behaviour and dietary intake patterns. Sustain. Prod. Consump. 16, 216–226 (2018).

    Article 

    Google Scholar
     

  • 43.

    Picasso, V. D. et al. Sustainability of meat production beyond carbon footprint: A synthesis of case studies from grazing systems in Uruguay. Meat Sci. 98, 346–354 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • 44.

    McCance, R. A. & Widdowson, E. M. McCance and Widdowson’s composition of foods integrated dataset 2015. https://www.gov.uk/government/publications/composition-of-foods-integrated-dataset-cofid (2015).

  • 45.

    Schader, C. et al. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. J. R. Soc. Interface 12, 20150891 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 46.

    van Zanten, H. H. E., Mollenhorst, H., Klootwijk, C. W., van Middelaar, C. E. & de Boer, I. J. M. Global food supply: Land use efficiency of livestock systems. Int. J. Life Cycle Assess. 21, 747–758 (2016).

    Article 
    CAS 

    Google Scholar
     

  • 47.

    van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. 24, 4185–4194 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 48.

    Millward, D. J. & Garnett, T. Food and the planet: Nutritional dilemmas of greenhouse gas emission reductions through reduced intakes of meat and dairy foods. Proc. Nutr. Soc. 69, 103–118 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 49.

    Enser, M., Hallett, K., Hewitt, B., Fursey, G. A. J. & Wood, J. D. Fatty acid content and composition of English beef, lamb and pork at retail. Meat Sci. 42, 443–456 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 50.

    Whittington, F. M., Dunn, R., Nute, G. R., Richardson, R. I. & Wood, J. D. Effect of pasture type on lamb product quality. Proc. Br. Soc. Anim. Sci. Ann. Food Ind. Conf. 9, 27–31 (2006).


    Google Scholar
     

  • 51.

    Warren, H. E. et al. Effects of breed and a concentrate or grass silage diet on beef quality in cattle of 3 ages: I: Animal performance, carcass quality and muscle fatty acid composition. Meat Sci. 78, 256–269 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 52.

    Givens, D. I., Gibbs, R. A., Rymer, C. & Brown, R. H. Effect of intensive vs. free range production on the fat and fatty acid composition of whole birds and edible portions of retail chickens in the UK. Food Chem. 127, 1549–1554 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 53.

    British Nutrition Foundation. Nutrition requirements. https://www.nutrition.org.uk/attachments/article/234/Nutrition%20Requirements_Revised%20Oct%202016.pdf (2016).

  • 54.

    Saarinen, M., Fogelholm, M., Tahvonen, R. & Kurppa, S. Taking nutrition into account within the life cycle assessment of food products. J. Clean. Prod. 149, 828–844 (2017).

    Article 

    Google Scholar
     

  • 55.

    ANSES-CIQUAL. Food composition tables. https://ciqual.anses.fr (2017).

  • 56.

    Lee, M. R. F. et al. Nutritional value of suckler beef from temperate pasture systems. Animal 15, 100257 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 57.

    Schlienger, J. Besoins nutritionnels et apports conseillés: Adultes, femmes enceintes, personnes âgées, sportifs. In Nutrition clinique pratique (ed. Schlienger, J.) 43–56 (Elsevier Masson, 2014).


    Google Scholar
     

  • 58.

    Jouven, M. et al. Quels équilibres végétal/animal en France métropolitaine, aux échelles nationale et petite région agricole?. INRA Prod. Anim. 31, 353–364 (2018).

    Article 

    Google Scholar
     

  • 59.

    Moore, F. C., Baldos, U., Hertel, T. & Diaz, D. New science of climate change impacts on agriculture implies higher social cost of carbon. Nat. Commun. 8, 1607 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 60.

    Aguiar, A., Narayanan, B. & Mcdougall, R. An overview of the GTAP 9 Data Base. J. Glob. Econ. Anal. 1, 181–208 (2016).

    Article 

    Google Scholar
     

  • 61.

    Irfanoglu, Z. B. & van der Mensbrugghe, D. Development of the version 9 non-CO2 GHG emissions database. https://www.gtap.agecon.purdue.edu/resources/download/7813.pdf (2015).

  • Products You May Like

    Leave a Reply

    Your email address will not be published. Required fields are marked *