Variability in waxy (Wx) allele, in-vitro starch digestibility, glycemic response and textural behaviour of popular Northern Himalayan rice varieties

Clinical Trials & Research
  • 1.

    Chan, J. C. et al. Diabetes in Asia: Epidemiology, risk factors, and pathophysiology. JAMA 301(20), 2129–2140 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Nanditha, A. et al. Diabetes in Asia and the Pacific: Implications for the global epidemic. Diabetes Care 39(3), 472–485 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    International Diabetes Federation. IDF Diabetes Atlas, Ninth edition. ISBN: 978-2-930229-87-4 https://www.diabetesatlas.org/en/ (2019).

  • 4.

    Shahbandeh. Total global rice consumption. https://www.statista.com/statistics/255977/total-global-rice-consumption/ (2021).

  • 5.

    Chakraborty, M. A. & Murray, E. V. Rice production and productivity in Andhra Pradesh. Tech. Rep. https://doi.org/10.13140/RG.2.1.2919.1203 (2011).

    Article 

    Google Scholar
     

  • 6.

    Villegas, R. et al. Prospective study of dietary carbohydrates, glycemic index, glycemic load, and incidence of type 2 diabetes mellitus in middle-aged Chinese women. Arch. Intern. Med. 167(21), 2310–2316 (2007).

    Article 

    Google Scholar
     

  • 7.

    Hu, E. A., Pan, A., Malik, V. & Qi, S. White rice consumption and risk of type 2 diabetes: Meta-analysis and systematic review. BMJ 344, 1454 (2012).

    Article 

    Google Scholar
     

  • 8.

    Golozar, A. et al. White rice intake and incidence of type-2 diabetes: Analysis of two prospective cohort studies from Iran. BMC Public Health 17(1), 1–11 (2017).

    Article 

    Google Scholar
     

  • 9.

    Frei, M., Siddhuraju, P. & Becker, K. Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chem. 83(3), 395–402 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Wan, Y. X. et al. Genetic polymorphism of Wx gene and its correlation with main grain quality characteristics in rice. Rice Sci. 14(2), 85–93 (2007).

    Article 

    Google Scholar
     

  • 11.

    Bligh, H. F. J. A microsatellite sequence closely linked to the waxy gene of O. sativa. Euphytica 86, 83–85 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Fitzgerald, M. A. et al. Identification of a major genetic determinant of glycaemic index in rice. Rice 4(2), 66–74 (2011).

    Article 

    Google Scholar
     

  • 13.

    Fuentes-Zaragoza, E. et al. Resistant starch as prebiotic: A review. Starch-Starke 63, 406–415 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Farooq, A. M., Dhital, S., Li, C., Zhang, B. & Huang, Q. Effects of palm oil on structural and in vitro digestion properties of cooked rice starches. Int. J. Biol. Macromol. 107, 1080–1085 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Prasad, V. S. S., Hymavathi, A., Babu, V. R. & Longvah, T. Nutritional composition in relation to glycemic potential of popular Indian rice varieties. Food Chem. 238, 29–34 (2019).

    Article 

    Google Scholar
     

  • 16.

    Naseer, B., Naik, H. R., Hussain, S. Z., Qadri, T., & Beigh, M. A. Visco‐thermal behaviour and structural characterization of temperate highland Himalayan rice cultivars. Starch‐Stärke. 3–4, 1–13 (2020).

  • 17.

    Naseer, B., Naik, H. R., Hussain, S. Z., Zargar, I., Bhat, T. A., & Nazir, N. Effect of carboxymethyl cellulose and baking conditions on in-vitro starch digestibility and physico-textural characteristics of low Glycemic Index gluten-free rice cookies. LWT. 141, 1–12 (2021).

  • 18.

    Murray, M. G. & Thompson, M. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4325 (1980).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Huang, L. et al. A fast silver staining protocol enabling simple and efficient detection of SSR markers using a non-denaturing polyacrylamide gel. J. Vis. Exp. 134, 57192 (2018).


    Google Scholar
     

  • 20.

    Chen, M. H., Bergman, C. J., McClung, A. M., Everette, J. D. & Tabien, R. E. Resistant starch: Variation among high amylose rice varieties and its relationship with apparent amylose content, pasting properties and cooking methods. Food Chem. 234, 180–189 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    AACC. American association of cereal Chemists: “Approved methods of the AACC”. AACC”. Methods, 76(11). St.Paul, MN, USA (1976).

  • 22.

    Goñi, I., García-Alonso, A. & Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 17(3), 427–437 (1997).

    Article 

    Google Scholar
     

  • 23.

    AOAC. Official Methods of Analysis 18th edn. (Association of Official Analytical Chemists, 2005).


    Google Scholar
     

  • 24.

    FAO, WHO. Carbohydrates in human nutrition: Report of a joint FAO/WHO expert consultation. FAO Food Nutr. Pap. 66, 1–140 (1998).


    Google Scholar
     

  • 25.

    Hussain, S. Z. et al. Effect of radiofrequency induced accelerated ageing on physico-chemical, cooking, pasting and textural properties of rice. LWT. 139, 110595 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Juliano, B. O. Structure and function of the rice grain and its fractions. Cereal Foods World 37, 772–774 (1992).

    CAS 

    Google Scholar
     

  • 27.

    Feng, F., Li, Y., Qin, X., Liao, Y. & Siddique, K. H. Changes in rice grain quality of Indica and Japonica type varieties released in China from 2000 to 2014. Front. Plant Sci. 8, 1863 (2017).

    Article 

    Google Scholar
     

  • 28.

    Biselli, C. et al. Improvement of marker-based predictability of Apparent Amylose Content in japonica rice through GBSSI allele mining. Rice 7(1), 1–18 (2014).

    Article 

    Google Scholar
     

  • 29.

    Bao, J. S., Coke, H. & Sun, M. Microsatellites in starch-synthesizing genes in relation to starch physicochemical properties in waxy rice (Oryza sativa L.). Theor. Appl. Genet. 105, 898–905 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Chen, M. H., Bergman, C. J., Pinnson, S. R. M. & Fjellstrom, R. G. Waxy gene haplotypes: Associations with apparent amylose content and the effect by the environment in an international rice germplasm collection. J. Cereal Sci. 47, 536–545 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Cheng, A., Ismail, I., Osman, M. & Hashim, H. Simple and rapid molecular techniques for identification of amylose levels in rice varieties. Int. J. Mol. Sci. 13(5), 6156–6166 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Krishnan, V. et al. Cooking fat types alter the inherent glycaemic response of niche rice varieties through resistant starch (RS) formation. Int. J. Biol. Macromol. 162, 1668–1681 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Kong, X. et al. Relationships among genetic, structural, and functional properties of rice starch. J. Agric. Food Chem. 63(27), 6241–6248 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Parween, S. et al. Balancing the double-edged sword effect of increased resistant starch content and its impact on rice texture: Its genetics and molecular physiological mechanisms. Plant Biotechnol. J. 18(8), 1763–1777 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Gani, A. et al. Resistant starch from five Himalayan rice cultivars and Horse chestnut: Extraction method optimization and characterization. Sci. Rep. 10(1), 1–9 (2020).

    Article 

    Google Scholar
     

  • 36.

    Juliano, B. O. Rice in Human Nutrition (International Rice Research Institute, 1993).


    Google Scholar
     

  • 37.

    Park, J., Oh, S. K., Chung, H. J. & Park, H. J. Structural and physicochemical properties of native starches and non-digestible starch residues from Korean rice cultivars with different amylose contents. Food Hydrocoll. 102, 105544 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Chandel, G. et al. In vitro identification of low glycemic index (GI) white rice using nutriscan GI analyzer. Adv. Life Sci. 5(23), 11090–11098 (2016).


    Google Scholar
     

  • 39.

    WHO. Healthy eating habits for patients with diabetes 2. In, 2. A noncommunicable disease education manual for primary health care professionals and patients. ISBN 978 92 9061 807 (2017).

  • 40.

    Wang, S. et al. Starch–lipid and starch–lipid–protein complexes: A comprehensive review. Compreh. Rev. Food Sci. Food Safety 19(3), 1056–1079 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Wang, S., Wang, S., Liu, L., Wang, S. & Copeland, L. Structural orders of wheat starch do not determine in vitro enzymatic digestibility. J. Agric. Food Chem. 65, 1697–1706 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Ranawana, D. V., Henry, C. J. K., Lightowler, H. J. & Wang, D. Glycaemic index of some commercially available rice and rice products in Great Britain. Int. J. Food Sci. Nutr. 60(sup4), 99–110 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Tuaño, A. P. P., Barcellano, E. C. G., & Rodriguez, M. S. Resistant starch levels and in vitro starch digestibility of selected cooked philippine brown and milled rices varying in apparent amylose content and glycemic index. Food Chem. Mol. Sci. https://doi.org/10.1016/j.fochms.2021.100010 (2021).

  • 44.

    Venn, B. J. & Green, T. J. Glycemic index and glycemic load: Measurement issues and their effect on diet–disease relationships. Eur. J. Clin. Nutr. 61(1), S122–S131 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 45.

    Li, H., Fitzgerald, M. A., Prakash, S., Nicholson, T. M. & Gilbert, R. G. The molecular structural features controlling stickiness in cooked rice, a major palatability determinant. Sci. Rep. 7(1), 1–12 (2017).

    Article 

    Google Scholar
     

  • 46.

    Lu, S., Cik, T. T., Lii, C. Y., Lai, P. & Chen, H. H. Effect of amylose content on structure, texture and α-amylase reactivity of cooked rice. LWT Food Sci. Technol. 54(1), 224–228 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    Li, H., Prakash, S., Nicholson, T. M., Fitzgerald, M. A. & Gilbert, R. G. Instrumental measurement of cooked rice texture by dynamic rheological testing and its relation to the fine structure of rice starch. Carbohyd. Polym. 146, 253–263 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    CURSO: Alimentación y Fenómeno Inmigratorio
    New device can provide improved protection to newborns on ventilators
    Obesity Increases Risk for Long-COVID, Study Finds
    New hormone treatment for advanced prostate cancer made available in England
    Luspatercept Benefit Also in Non-Transfusion-Dependent Thalassemia
    What are the mental health benefits of yoga?

    Leave a Reply

    Your email address will not be published. Required fields are marked *