An in vitro batch fermentation protocol for studying the contribution of food to gut microbiota composition and functionality

Clinical Trials & Research
  • 1.

    Flint, H. J., Duncan, S. H., Scott, K. P. & Louis, P. Links between diet, gut microbiota composition and gut metabolism. Proc. Nutr. Soc. 74, 13–22 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 2.

    Salazar, N. et al. Exopolysaccharides produced by Bifidobacterium longum IPLA E44 and Bifidobacterium animalis subsp. lactis IPLA R1 modify the composition and metabolic activity of human faecal microbiota in pH-controlled batch cultures. Int. J. Food Microbiol. 135, 260–267 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 3.

    Power, S. E., O’Toole, P. W., Stanton, C., Ross, R. P. & Fitzgerald, G. F. Intestinal microbiota, diet and health. Br. J. Nutr. 111, 387–402 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 4.

    Shankar, V. et al. Differences in gut metabolites and microbial composition and functions between Egyptian and U.S. children are consistent with their diets. mSystems 2, e00169–16 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 5.

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 6.

    De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 7.

    Venema, K. & van den Abbeele, P. Experimental models of the gut microbiome. Best Pract. Res. Clin. Gastroenterol. 27, 115–126 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 8.

    Molly, K., Vande Woestyne, M. & Verstraete, W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microbiol. Biotechnol. 39, 254–258 (1993).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 9.

    Agans, R. et al. Dietary fatty acids sustain the growth of the human gut microbiota. Appl. Environ. Microbiol. 84, e01525–18 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 10.

    Wiese, M. et al. CoMiniGut—a small volume in vitro colon model for the screening of gut microbial fermentation processes. PeerJ 6, e4268 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 11.

    Ludwig, I. A., Paz de Peña, M., Concepción, C. & Alan, C. Catabolism of coffee chlorogenic acids by human colonic microbiota: colonic catabolism of coffee chlorogenic acids. BioFactors 39, 623–632 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 12.

    Coles, L. T., Moughan, P. J. & Darragh, A. J. In vitro digestion and fermentation methods, including gas production techniques, as applied to nutritive evaluation of foods in the hindgut of humans and other simple-stomached animals. Anim. Feed Sci. Technol. 123–124, 421–444 (2005).

    Article 
    CAS 

    Google Scholar
     

  • 13.

    Wang, M. et al. In vitro colonic fermentation of dietary fibers: fermentation rate, short-chain fatty acid production and changes in microbiota. Trends Food Sci. Technol. 88, 1–9 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Mould, F. L., Morgan, R., Kliem, K. E. & Krystallidou, E. A review and simplification of the in vitro incubation medium. Anim. Feed Sci. Technol. 123–124, 155–172 (2005).

    Article 

    Google Scholar
     

  • 15.

    Brodkorb, A. et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 14, 991–1014 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Pérez-Burillo, S., Rufián-Henares, J. A. & Pastoriza, S. Towards an improved global antioxidant response method (GAR+): physiological-resembling in vitro digestion-fermentation method. Food Chem 239, 1253–1262 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 17.

    Pérez-Burillo, S. et al. Effect of food thermal processing on the composition of the gut microbiota. J. Agric. Food Chem. 66, 11500–11509 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 18.

    Pérez-Burillo, S. et al. Effect of in vitro digestion-fermentation on green and roasted coffee bioactivity: the role of the gut microbiota. Food Chem. 279, 252–259 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 19.

    Pérez-Burillo, S. et al. Potential probiotic salami with dietary fiber modulates antioxidant capacity, short chain fatty acid production and gut microbiota community structure. LWT 105, 355–362 (2019).

    Article 
    CAS 

    Google Scholar
     

  • 20.

    Pérez-Burillo, S. et al. Spent coffee grounds extract, rich in mannooligosaccharides, promotes a healthier gut microbial community in a dose-dependent manner. J. Agric. Food Chem. 67, 2500–2509 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 21.

    Pérez-Burillo, S., Rajakaruna, S., Pastoriza, S., Paliy, O. & Rufián-Henares, J. A. Bioactivity of food melanoidins is mediated by gut microbiota. Food Chem. 316, 126309 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 22.

    Rocchetti, G. et al. Transformation of polyphenols found in pigmented gluten-free flours during in vitro large intestinal fermentation. Food Chem. 298, 125068 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 23.

    Jin, J. B. et al. Supplementation with Chlorella vulgaris, Chlorella protothecoides, and Schizochytrium sp. increases propionate-producing bacteria in in vitro human gut fermentation. J. Sci. Food Agric. 100, 2938–2945 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 24.

    Selma, M. V., Espín, J. C. & Tomás-Barberán, F. A. Interaction between phenolics and gut microbiota: role in human health. J. Agric. Food Chem. 57, 6485–6501 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 25.

    Rowland, I. et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57, 1–24 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Tomas‐Barberan, F. et al. In vitro transformation of chlorogenic acid by human gut microbiota. Mol. Nutr. Food Res. 58, 1122–1131 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 27.

    Saura‐Calixto, F. et al. Proanthocyanidin metabolites associated with dietary fibre from in vitro colonic fermentation and proanthocyanidin metabolites in human plasma. Mol. Nutr. Food Res. 54, 939–946 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 28.

    Roowi, S. et al. Green tea flavan-3-ols: colonic degradation and urinary excretion of catabolites by humans. J. Agric. Food Chem. 58, 1296–1304 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 29.

    Jaganath, I. B., Mullen, W., Lean, M. E. J., Edwards, C. A. & Crozier, A. In vitro catabolism of rutin by human fecal bacteria and the antioxidant capacity of its catabolites. Free Radic. Biol. Med. 47, 1180–1189 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 30.

    Serra, A. et al. Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chem. 130, 383–393 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Pinta, M. N. et al. In vitro gut metabolism of [U-13C]-quinic acid, the other hydrolysis product of chlorogenic acid. Mol. Nutr. Food Res. 62, 1800396 (2018).

  • 32.

    Hidalgo, M. et al. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J. Agric. Food Chem. 60, 3882–3890 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Marín, L., Miguélez, E. M., Villar, C. J. & Lombó, F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed. Res. Int. https://doi.org/10.1155/2015/905215 (2015).

  • 34.

    Stevens, J. F. & Maier, C. S. The chemistry of gut microbial metabolism of polyphenols. Phytochem. Rev. 15, 425–444 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 35.

    Fuertes, Á. et al. Adaptation of the human gut microbiota metabolic network during the first year after birth. Front. Microbiol. 10, 848 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 36.

    Ríos-Covián, D. et al. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 7, 185 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 37.

    Shen, Q., Chen, Y. A. & Tuohy, K. M. A comparative in vitro investigation into the effects of cooked meats on the human faecal microbiota. Anaerobe 16, 572–577 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 38.

    Poelaert, C. et al. Cooking has variable effects on the fermentability in the large intestine of the fraction of meats, grain legumes, and insects that is resistant to digestion in the small intestine in an in vitro model of the pig’s gastrointestinal tract. J. Agric. Food Chem. 65, 435–444 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 39.

    Lee, D. K. et al. The combination of mixed lactic acid bacteria and dietary fiber lowers serum cholesterol levels and fecal harmful enzyme activities in rats. Arch. Pharm. Res. 34, 23–29 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 40.

    Molska, M. & Regula, J. Potential mechanisms of probiotics action in the prevention and treatment of colorectal cancer. Nutrients 11, 2453 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • 41.

    Pham, V. T. & Mohajeri, M. H. The application of in vitro human intestinal models on the screening and development of pre- and probiotics. Benef. Microbes 9, 725–742 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 42.

    Gu, F. et al. In vitro fermentation behavior of isomalto/malto-polysaccharides using human fecal inoculum indicates prebiotic potential. Mol. Nutr. Food Res. 62, e1800232 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 43.

    Fehlbaum, S. et al. In vitro fermentation of selected prebiotics and their effects on the composition and activity of the adult gut microbiota. Int. J. Mol. Sci. 19, 3097 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 44.

    Pérez-Burillo, S. et al. Potential probiotic salami with dietary fiber modulates metabolism and gut microbiota in a human intervention study. J. Funct. Foods 66, 103790 (2020).

    Article 
    CAS 

    Google Scholar
     

  • 45.

    Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet–microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 46.

    Magnúsdóttir, S. et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 47.

    Coyte, K. Z. & Rakoff-Nahoum, S. Understanding competition and cooperation within the mammalian gut microbiome. Curr. Biol. 29, R538–R544 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 48.

    Payne, A. N., Zihler, A., Chassard, C. & Lacroix, C. Advances and perspectives in in vitro human gut fermentation modeling. Trends Biotechnol. 30, 17–25 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 49.

    Cohen, S. M. Human relevance of animal carcinogenicity studies. Regul. Toxicol. Pharmacol. 21, 75–80 (1995). discussion 81-86.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 50.

    Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 51.

    Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 52.

    Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 53.

    Shankar, V. et al. The networks of human gut microbe-metabolite associations are different between health and irritable bowel syndrome. ISME J. 9, 1899–1903 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 54.

    Aguirre, M. & Venema, K. Challenges in simulating the human gut for understanding the role of the microbiota in obesity. Benef. Microbes 8, 31–53 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 55.

    Gratton, J. et al. Optimized sample handling strategy for metabolic profiling of human feces. Anal. Chem. 88, 4661–4668 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 56.

    Gorzelak, M. A. et al. Methods for improving human gut microbiome data by reducing variability through sample processing and storage of stool. PLoS ONE 10, e0134802 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 57.

    Long, W. et al. Differential responses of gut microbiota to the same prebiotic formula in oligotrophic and eutrophic batch fermentation systems. Sci. Rep. 5, 1–11 (2015).


    Google Scholar
     

  • 58.

    Paliy, O. & Shankar, V. Application of multivariate statistical techniques in microbial ecology. Mol. Ecol. 25, 1032–1057 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 59.

    Pérez-Burillo, S., Rufián-Henares, J. A. & Pastoriza, S. Effect of home cooking on the antioxidant capacity of vegetables: relationship with Maillard reaction indicators. Food Res. Int. 121, 514–523 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 60.

    Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35, 833–844 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 61.

    Morales, F. J., Somoza, V. & Fogliano, V. Physiological relevance of dietary melanoidins. Amino Acids 42, 1097–1109 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 62.

    Bauer, E. & Thiele, I. From network analysis to functional metabolic modeling of the human gut microbiota. mSystems 3, 00209–00217 (2018).

    Article 

    Google Scholar
     

  • 63.

    Fernandes, J., Su, W., Rahat-Rozenbloom, S., Wolever, T. M. S. & Comelli, E. M. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr. Diabetes 4, e121–e121 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 64.

    Bjerrum, J. T. et al. Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s disease and healthy individuals. Metabolomics 11, 122–133 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 65.

    Nistal, E. et al. Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie 94, 1724–1729 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 66.

    Ze, X., Duncan, S. H., Louis, P. & Flint, H. J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6, 1535–1543 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 67.

    Zhou, L., Xie, M., Yang, F. & Liu, J. Antioxidant activity of high purity blueberry anthocyanins and the effects on human intestinal microbiota. LWT 117, 108621 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 68.

    Gonçalves, G. A. et al. Effects of in vitro gastrointestinal digestion and colonic fermentation on a rosemary (Rosmarinus officinalis L) extract rich in rosmarinic acid. Food Chem. 271, 393–400 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 69.

    Chen, Y., Chang, S. K. C., Zhang, Y., Hsu, C.-Y. & Nannapaneni, R. Gut microbiota and short chain fatty acid composition as affected by legume type and processing methods as assessed by simulated in vitro digestion assays. Food Chem. 312, 126040 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 70.

    del Hierro, J. N. et al. In vitro colonic fermentation of saponin-rich extracts from quinoa, lentil, and fenugreek. effect on sapogenins yield and human gut microbiota. J. Agric. Food Chem. 68, 106–116 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 71.

    Zhang, X. et al. Phytochemical profile, bioactivity, and prebiotic potential of bound phenolics released from rice bran dietary fiber during in vitro gastrointestinal digestion and colonic fermentation. J. Agric. Food Chem. 67, 12796–12805 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 72.

    Wang, M. et al. Purified fraction of polysaccharides from Fuzhuan brick tea modulates the composition and metabolism of gut microbiota in anaerobic fermentation in vitro. Int. J. Biol. Macromol. 140, 858–870 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 73.

    Rui, Y. et al. Simulated digestion and fermentation in vitro by human gut microbiota of intra- and extra-cellular polysaccharides from Aspergillus cristatus. LWT 116, 108508 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 74.

    Chen, L. et al. Simulated digestion and fermentation in vitro by human gut microbiota of polysaccharides from Helicteres angustifolia L. Int. J. Biol. Macromol. 141, 1065–1071 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 75.

    Huang, F. et al. Structural characterization and in vitro gastrointestinal digestion and fermentation of litchi polysaccharide. Int. J. Biol. Macromol. 140, 965–972 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Products You May Like

    Leave a Reply

    Your email address will not be published. Required fields are marked *