Automated food intake tracking requires depth-refined semantic segmentation to rectify visual-volume discordance in long-term care homes

Clinical Trials & Research
  • 1.

    Pirlich, M. & Lochs, H. Nutrition in the elderly. Best Pract. Res. Clin. Gastroenterol. 15, 869–884 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Keller, H. H., Østbye, T. & Goy, R. Nutritional risk predicts quality of life in elderly community-living Canadians. J. Gerontol.: Ser. A 59, M68–M74 (2004).


    Google Scholar
     

  • 3.

    Goates, S., Du, K., Braunschweig, C. A. & Arensberg, M. B. Economic burden of disease-associated malnutrition at the state level. PLoS ONE 11, e0161833 (2016).

  • 4.

    Russell, C. A. The impact of malnutrition on healthcare costs and economic considerations for the use of oral nutritional supplements. Clin. Nutr. Suppl. 2, 25–32 (2007).


    Google Scholar
     

  • 5.

    Kaiser, M. J. et al. Frequency of malnutrition in older adults: a multinational perspective using the mini nutritional assessment. J. Am. Geriatr. Soc. 58, 1734–1738 (2010).

    PubMed 

    Google Scholar
     

  • 6.

    Keller, H. et al. Prevalence of malnutrition or risk in residents in long term care: Comparison of four tools. J. Nutrit. Gerontol. Geriatrics 38, 329–344 (2019).


    Google Scholar
     

  • 7.

    Keller, H. H. et al. Prevalence and determinants of poor food intake of residents living in long-term care. J. Am. Med. Dir. Assoc. 18, 941–947 (2017).

    PubMed 

    Google Scholar
     

  • 8.

    Martin, C. K. et al. A novel method to remotely measure food intake of free-living individuals in real time: the remote food photography method. Br. J. Nutr. 101, 446–456 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Williamson, D. A. et al. Comparison of digital photography to weighed and visual estimation of portion sizes. J. Am. Diet. Assoc. 103, 1139–1145 (2003).

    PubMed 

    Google Scholar
     

  • 10.

    Bingham, S. A. Limitations of the various methods for collecting dietary intake data. Ann. Nutr. Metab. 35, 117–127 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Castellanos, V. H. & Andrews, Y. N. Inherent flaws in a method of estimating meal intake commonly used in long-term-care facilities. J. Am. Diet. Assoc. 102, 826–830 (2002).

    PubMed 

    Google Scholar
     

  • 12.

    Pfisterer, K., Boger, J. & Wong, A. Prototyping the automated food imaging and nutrient intake tracking (AFINI-T) system: A modified participatory iterative design sprint. JMIR Hum. Factors 6, e13017 (2019).

  • 13.

    Kong, F. Automatic Food Intake Assessment Using Camera Phones. Ph.D. thesis, Michigan Technological University (2012).

  • 14.

    Meyers, A. et al. Im2calories: towards an automated mobile vision food diary. In Proceedings of the IEEE International Conference on Computer Vision, 1233–1241 (2015).

  • 15.

    Okamoto, K. & Yanai, K. An automatic calorie estimation system of food images on a smartphone. In Proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management, 63–70 (ACM, 2016).

  • 16.

    Pouladzadeh, P., Shirmohammadi, S. & Yassine, A. You are what you eat: So measure what you eat!. IEEE Instrum. Measure. Mag. 19, 9–15 (2016).


    Google Scholar
     

  • 17.

    Aslan, S., Ciocca, G. & Schettini, R. Semantic food segmentation for automatic dietary monitoring. In Proceedings of the IEEE International Conference on Consumer Electronics-Berlin, 1–6 (2018).

  • 18.

    Kong, F., He, H., Raynor, H. A. & Tan, J. DietCam: Multi-view regular shape food recognition with a camera phone. Pervasive Mob. Comput. 19, 108–121 (2015).


    Google Scholar
     

  • 19.

    Aguilar, E., Remeseiro, B., Bolaños, M. & Radeva, P. Grab, pay, and eat: Semantic food detection for smart restaurants. IEEE Trans. Multimedia 20, 3266–3275 (2018).


    Google Scholar
     

  • 20.

    Doulah, A., Mccrory, M. A., Higgins, J. A. & Sazonov, E. A systematic review of technology-driven methodologies for estimation of energy intake. IEEE Access 7, 49653–49668 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Boushey, C. J., Spoden, M., Zhu, F. M., Delp, E. J. & Kerr, D. A. New mobile methods for dietary assessment: Review of image-assisted and image-based dietary assessment methods. Proc. Nutrit. Soc. 76, 283–294. https://doi.org/10.1017/S0029665116002913 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Pettitt, C. et al. A pilot study to determine whether using a lightweight, wearable micro-camera improves dietary assessment accuracy and offers information on macronutrients and eating rate. Br. J. Nutr. 115, 160–167 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Beltran, A. et al. Adapting the ebutton to the abilities of children for diet assessment. In Proceedings of Measuring Behavior 2016: 10th International Conference on Methods and Techniques in Behavioral Research. International Conference on Methods and Techniques in Behavioral Research (10th: 2016: Dublin, Ireland), vol. 2016, 72 (NIH Public Access, 2016).

  • 24.

    Parent, M., Niezgoda, H., Keller, H. H., Chambers, L. W. & Daly, S. Comparison of visual estimation methods for regular and modified textures: Real-time vs digital imaging. J. Acad. Nutr. Diet. 112, 1636–1641 (2012).

    PubMed 

    Google Scholar
     

  • 25.

    Subhi, M. A., Ali, S. H. & Mohammed, M. A. Vision-based approaches for automatic food recognition and dietary assessment: A survey. IEEE Access 7, 35370–35381 (2019).


    Google Scholar
     

  • 26.

    Astell, A. J. et al. Validation of the nana (novel assessment of nutrition and ageing) touch screen system for use at home by older adults. Exp. Gerontol. 60, 100–107 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Lo, F. P. W., Sun, Y., Qiu, J. & Lo, B. Image-based food classification and volume estimation for dietary assessment: A review. IEEE J. Biomed. Health Inform. 24, 1926–1939 (2020).

    PubMed 

    Google Scholar
     

  • 28.

    Bruno, V. & Silva Resende, C. J. A survey on automated food monitoring and dietary management systems. J. Health Med. Inform.8 (2017).

  • 29.

    Pouladzadeh, P., Shirmohammadi, S. & Al-Maghrabi, R. Measuring calorie and nutrition from food image. IEEE Trans. Instrum. Meas. 63, 1947–1956 (2014).


    Google Scholar
     

  • 30.

    Zhu, F., Bosch, M., Khanna, N., Boushey, C. J. & Delp, E. J. Multiple hypotheses image segmentation and classification with application to dietary assessment. IEEE J. Biomed. Health Inform. 19, 377–388 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Shimoda, W. & Yanai, K. CNN-based food image segmentation without pixel-wise annotation. In Proceedings of the International Conference on Image Analysis and Processing, 449–457 (2015).

  • 32.

    Kawano, Y. & Yanai, K. Foodcam: A real-time food recognition system on a smartphone. Multimed. Tools Appl. 74, 5263–5287 (2015).


    Google Scholar
     

  • 33.

    Pouladzadeh, P., Kuhad, P., Peddi, S. V. B., Yassine, A. & Shirmohammadi, S. Food calorie measurement using deep learning neural network. In Proceedings of the IEEE International Instrumentation and Measurement Technology, 1–6 (2016).

  • 34.

    Hassannejad, H. et al. A new approach to image-based estimation of food volume. Algorithms 10, 66 (2017).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 35.

    Boykov, Y. Y. & Jolly, M.-P. Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In Proceedings of the IEEE International Conference on Computer Vision 1, 105–112 (2001).


    Google Scholar
     

  • 36.

    He, Y., Xu, C., Khanna, N., Boushey, C. J. & Delp, E. J. Food image analysis: segmentation, identification and weight estimation. In Proceedings of the IEEE International Conference on Multimedia and Expo, 1–6 (2013).

  • 37.

    Wang, Y., He, Y., Boushey, C. J., Zhu, F. & Delp, E. J. Context based image analysis with application in dietary assessment and evaluation. Multimed. Tools Appl. 77, 19769–19794 (2018).

    PubMed 

    Google Scholar
     

  • 38.

    Yunus, R. et al. A framework to estimate the nutritional value of food in real time using deep learning techniques. IEEE Access 7, 2643–2652 (2018).


    Google Scholar
     

  • 39.

    Zheng, X., Lei, Q., Yao, R., Gong, Y. & Yin, Q. Image segmentation based on adaptive k-means algorithm. EURASIP J. Image Video Process. 2018, 68 (2018).


    Google Scholar
     

  • 40.

    Ciocca, G., Mazzini, D. & Schettini, R. Evaluating CNN-based semantic food segmentation across illuminants. In Proceedings of the International Workshop on Computational Color Imaging, 247–259 (2019).

  • 41.

    Xu, C., He, Y., Khanna, N., Boushey, C. J. & Delp, E. J. Model-based food volume estimation using 3d pose. In Proceedings of the 2013 20th IEEE International Conference on Image Processing (ICIP), 2534–2538 (2013).

  • 42.

    Chae, J. et al. Volume estimation using food specific shape templates in mobile image-based dietary assessment. Proc. SPIE 7873, 78730K (2011).

    PubMed Central 

    Google Scholar
     

  • 43.

    Jia, W. et al. Accuracy of food portion size estimation from digital pictures acquired by a chest-worn camera. Public Health Nutr. 17, 1671–1681 (2014).

    PubMed 

    Google Scholar
     

  • 44.

    Ofei, K. T., Mikkelsen, B. E. & Scheller, R. A. Validation of a novel image-weighed technique for monitoring food intake and estimation of portion size in hospital settings: a pilot study. Public Health Nutr. 22, 1203–1208 (2019).

    PubMed 

    Google Scholar
     

  • 45.

    Rachakonda, L., Mohanty, S. P. & Kougianos, E. iLog: An intelligent device for automatic food intake monitoring and stress detection in the IoMT. IEEE Trans. Consum. Electron. 66, 115–124 (2020).


    Google Scholar
     

  • 46.

    Herzig, D. et al. Volumetric food quantification using computer vision on a depth-sensing smartphone: Preclinical study. JMIR Mhealth Uhealth 8, e15294 (2020).

  • 47.

    Dehais, J., Anthimopoulos, M., Shevchik, S. & Mougiakakou, S. Two-view 3d reconstruction for food volume estimation. IEEE Trans. Multimedia 19, 1090–1099 (2017).


    Google Scholar
     

  • 48.

    Puri, M., Zhu, Z., Yu, Q., Divakaran, A. & Sawhney, H. Recognition and volume estimation of food intake using a mobile device. In 2009 Workshop on Applications of Computer Vision (WACV), 1–8 (2009).

  • 49.

    Rahman, M. H. et al. Food volume estimation in a mobile phone based dietary assessment system. In International Conference on Signal Image Technology and Internet Based Systems, 988–995 (2012).

  • 50.

    Fang, S. et al. A comparison of food portion size estimation using geometric models and depth images. In Proceedings of the IEEE International Conference on Image Processing (ICIP), 26–30 (2016).

  • 51.

    Shang, J. et al. A mobile structured light system for food volume estimation. In IEEE International Conference on Computer Vision Workshops (ICCV Workshops), 100–101 (2011).

  • 52.

    Chen, M.-Y. et al. Automatic chinese food identification and quantity estimation. In SIGGRAPH Asia 2012 Technical Briefs, 29 (2012).

  • 53.

    Liao, H.-C., Lim, Z.-Y. & Lin, H.-W. Food intake estimation method using short-range depth camera. In Signal and Image Processing (ICSIP), IEEE International Conference on, 198–204 (2016).

  • 54.

    Zhou, L., Zhang, C., Liu, F., Qiu, Z. & He, Y. Application of deep learning in food: A review. Comprehens. Rev. Food Sci. Food Saf. 18, 1793–1811 (2019).


    Google Scholar
     

  • 55.

    Ferdinand Christ, P. et al. Diabetes60-inferring bread units from food images using fully convolutional neural networks. In Proceedings of the IEEE International Conference on Computer Vision Workshops, 1526–1535 (2017).

  • 56.

    Lo, F.P.-W., Sun, Y., Qiu, J. & Lo, B. Food volume estimation based on deep learning view synthesis from a single depth map. Nutrients 10, 2005 (2018).

    PubMed Central 

    Google Scholar
     

  • 57.

    Lo, F.P.-W., Sun, Y., Qiu, J. & Lo, B. P. Point2volume: A vision-based dietary assessment approach using view synthesis. IEEE Trans. Industr. Inf. 16, 577–586 (2019).


    Google Scholar
     

  • 58.

    Abdul, A., Vermeulen, J., Wang, D., Lim, B. Y. & Kankanhalli, M. Trends and trajectories for explainable, accountable and intelligible systems: an HCI research agenda. In Proceedings of the CHI Conference on Human Factors in Computing Systems, 582 (2018).

  • 59.

    Ciocca, G., Napoletano, P. & Schettini, R. Food recognition: A new dataset, experiments and results. IEEE J. Biomed. Health Inform. 21, 588–598 (2017).

    PubMed 

    Google Scholar
     

  • 60.

    He, K., Zhang, X., Ren, S. & Sun, J. Identity mappings in deep residual networks. In Proceedings of the European Conference on Computer Vision, 630–645 (2016).

  • 61.

    Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. Pyramid scene parsing network. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2017).

  • 62.

    Keller, H. H. et al. Prevalence of inadequate micronutrient intakes of Canadian long-term care residents. Br. J. Nutr. 119, 1047–1056 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Tonekaboni, S., Joshi, S., McCradden, M. D. & Goldenberg, A. What clinicians want: contextualizing explainable machine learning for clinical end use. In Machine Learning for Healthcare Conference, 359–380 (2019).

  • 64.

    MED-PASS, I. Dietary intake record – 100/pad (2017).

  • 65.

    Healthcare, B. Food intake record form top-punch (2017).

  • 66.

    MED-PASS. Dietary intake form (2017).

  • 67.

    BRiGGS Healthcare. Dietary intake form (2017).

  • 68.

    Badrinarayanan, V., Kendall, A. & Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2017).

    PubMed 

    Google Scholar
     

  • 69.

    Deng, J. et al. ImageNet: A large-scale hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition, 248–255 (2009).

  • 70.

    Liu, C. et al. Auto-DeepLab: hierarchical neural architecture search for semantic image segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 82–92 (2019).

  • 71.

    Atherton, T. J. & Kerbyson, D. J. Size invariant circle detection. Image Vis. Comput. 17, 795–803 (1999).


    Google Scholar
     

  • 72.

    Minich, D. M. A review of the science of colorful, plant-based food and practical strategies for eating the rainbow. J. Nutr. Metabolism2019 (2019).

  • 73.

    Vucea, V. et al. Prevalence and characteristics associated with modified texture food use in long term care: An analysis of making the most of mealtimes (m3) project. Can. J. Diet. Pract. Res. 80, 104–110 (2019).

    PubMed 

    Google Scholar
     

  • 74.

    Vucea, V., Keller, H. H. & Ducak, K. Interventions for improving mealtime experiences in long-term care. J. Nutr. Gerontol. Geriatrics 33, 249–324 (2014).


    Google Scholar
     

  • 75.

    Achanta, R. et al. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012).

    PubMed 

    Google Scholar
     

  • Products You May Like

    Leave a Reply

    Your email address will not be published. Required fields are marked *