Effect of probiotic supplementation on plasma metabolite profile after Roux-Y gastric bypass: a prospective, randomized, double-blind, placebo-controlled clinical trial

Clinical Trials & Research
  • Wang FG, Yan WM, Yan M, Song MM. Outcomes of Mini vs Roux-en-Y gastric bypass: a meta-analysis and systematic review. Int J Surg. 2018;56:7–14.

    PubMed 
    Article 

    Google Scholar
     

  • Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, et al. Bariatric surgery: a systematic review and meta-analysis. Jama. 2004;292:1724–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lager CJ, Esfandiari NH, Luo Y, Subauste AR, Kraftson AT, Brown MB, et al. Metabolic parameters, weight loss, and comorbidities 4 years after Roux-en-Y gastric bypass and sleeve gastrectomy. Obes Surg. 2018;28:3415–23.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Adams TD, Davidson LE, Litwin SE, Kim J, Kolotkin RL, Nanjee MN, et al. Weight and metabolic outcomes 12 years after gastric bypass. N Engl J Med. 2017;377:1143–55.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li JV, Ashrafian H, Bueter M, Kinross J, Sands C, le Roux CW, et al. Metabolic surgery profoundly influences gut microbial–host metabolic cross-talk. Gut. 2011;60:1214–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Al Assal K, Prifti E, Belda E, Sala P, Clément K, Dao MC, et al. Gut microbiota profile of obese diabetic women submitted to Roux-en-Y gastric bypass and its association with food intake and postoperative diabetes remission. Nutrients. 2020;12:278.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pajecki D, de Oliveira LC, Sabino EC, de Souza-Basqueira M, Dantas AC, Nunes GC, et al. Changes in the intestinal microbiota of superobese patients after bariatric surgery. Clinics (Sao Paulo). 2019;74:e1198.

    Article 

    Google Scholar
     

  • Kong LC, Tap J, Aron-Wisnewsky J, Pelloux V, Basdevant A, Bouillot JL, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98:16–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ilhan ZE, DiBaise JK, Isern NG, Hoyt DW, Marcus AK, Kang DW, et al. Distinctive microbiomes and metabolites linked with weight loss after gastric bypass, but not gastric banding. ISME J. 2017;11:2047–58.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Samczuk P, Ciborowski M, Kretowski A. Application of metabolomics to study effects of bariatric surgery. J Diabetes Res. 2018;2018:6270875.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lee ES, Song EJ, Nam YD, Lee SY. Probiotics in human health and disease: from nutribiotics to pharmabiotics. J Microbiol. 2018;56:773–82.

    PubMed 
    Article 

    Google Scholar
     

  • Vandenplas Y, Huys G, Daube G. Probiotics: An update. J Pediatr (Rio J). 2015;91:06–21.

    Article 

    Google Scholar
     

  • Chung HJ, Sim JH, Min TS, Choi HK. Metabolomics and lipidomics approaches in the science of probiotics: a review. J Med Food. 2018;21:1086–95.

    PubMed 
    Article 

    Google Scholar
     

  • Seridi L, Leo GC, Dohm GL, Pories WJ, Lenhard J. Time course metabolome of Roux-en-Y gastric bypass confirms correlation between leptin, body weight and the microbiome. PLoS One. 2018;13:e0198156.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Jarak I, Pereira SS, Carvalho RA, Oliveira PF, Alves MG, Guimarães M, et al. Gastric bypass with different biliopancreatic limb lengths results in similar post-absorptive metabolomics profiles. Obes Surg. 2020;30:1068–78.

    PubMed 
    Article 

    Google Scholar
     

  • Herzog K, Berggren J, Al Majdoub M, Balderas AC, Lindqvist A, Hedenbro J, et al. Metabolic effects of gastric bypass surgery: is it all about calories? Diabetes. 2020;69:2027–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dreyfuss JM, Yuchi Y, Dong X, Efthymiou V, Pan H, Simonson DC, et al. High-throughput mediation analysis of human proteome and metabolome identifies mediators of post-bariatric surgical diabetes control. Nat Commun. 2021;12:6951.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jones B, Sands C, Alexiadou K, Minnion J, Tharakan G, Behary P, et al. The metabolomic effects of tripeptide gut hormone infusion compared to Roux-en-Y gastric bypass and caloric restriction. J Clin Endocrinol Metab. 2022;107:e767–e782.

    PubMed 
    Article 

    Google Scholar
     

  • Greenstein R. Reporting weight loss. Obes Surg. 2007;17:1275.

    PubMed 
    Article 

    Google Scholar
     

  • Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2:2692–703.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Foxall PJ, Spraul M, Farrant RD, Lindon LC, Neild GH, Nicholson JK. 750 MHz 1H-NMR spectroscopy of human blood plasma. J Pharm Biomed Anal. 1993;11:267–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bell JD, Brown JC, Nicholson JK, Sadler PJ. Assignment of resonances for ‘acute-phase’ glycoproteins in high resolution proton NMR spectra of human blood plasma. FEBS Lett. 1987;215:311–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fan TW. Metabolite profiling by one-and two-dimensional NMR analysis of complex mixtures. Progress in nuclear magnetic resonance spectroscopy. 1996;28:161–219.

    CAS 
    Article 

    Google Scholar
     

  • R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available from: http://www.r-project.org/index.html

  • Savorani F, Tomasi G, Engelsen SB. icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson. 2010;202:190–202.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Andersson CA, Bro R. The N-way toolbox for MATLAB. Chemometrics Intelligent Lab Syst. 2000;52:1–4.

    CAS 
    Article 

    Google Scholar
     

  • Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, et al. Differential adaptation of human gut microbiota to bariatric surgery–induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59:3049–57.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Murphy R, Tsai P, Jüllig M, Liu A, Plank L, Booth M. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2017;27:917–25.

    PubMed 
    Article 

    Google Scholar
     

  • Ramos MRZ, de Oliveira Carlos L, Wagner NRF, Felicidade I, da Cruz MR, Taconeli CA, et al. Effects of Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 supplementation on nutritional and metabolic parameters in the early postoperative period after Roux-en-Y Gastric Bypass: a randomized, double-blind, placebo-controlled trial. Obes Surg. 2021;31:2105–14.

    PubMed 
    Article 

    Google Scholar
     

  • Wagner NRF, Ramos MRZ, de Oliveira Carlos L, da Cruz MRR, Taconeli CA, Filho AJB, et al. Effects of probiotics supplementation on gastrointestinal symptoms and SIBO after Roux-en-Y Gastric Bypass: a prospective, randomized, double-blind, placebo-controlled trial. Obes Surg. 2021;31:143–50.

    PubMed 
    Article 

    Google Scholar
     

  • Carlos LO, Ramos MRZ, Wagner NRF, Freitas LAC, Felicidade I, Campos ACL. Probiotic supplementation attenuates binge eating and food addiction 1 year after Roux-en-Y Gastric Bypass: a randomized, double-blind, placebo-controlled trial. Arq Bras Cir Dig. 2022;35:e1659.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cornejo-Pareja I, Clemente-Postigo M, Tinahones FJ. Metabolic and endocrine consequences of bariatric surgery. Front Endocrinol (Lausanne). 2019;10:626.

    Article 

    Google Scholar
     

  • Clemente-Postigo M, del Mar Roca-Rodriguez M, Camargo A, Ocaña-Wilhelmi L, Cardona F, Tinahones FJ. Lipopolysaccharide and lipopolysaccharide-binding protein levels and their relationship to early metabolic improvement after bariatric surgery. Surg Obes Relat Dis. 2015;11:933–9.

    PubMed 
    Article 

    Google Scholar
     

  • Ashrafian H, le Roux CW. Metabolic surgery and gut hormones–a review of bariatric entero-humoral modulation. Physiol Behav. 2009;97:620–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Haluzík M, Kratochvílová H, Haluzíková D, Mráz M. Gut as an emerging organ for the treatment of diabetes: focus on mechanism of action of bariatric and endoscopic interventions. J Endocrinol. 2018;237:R1–R17.

    PubMed 
    Article 

    Google Scholar
     

  • Lips MA, Van Klinken JB, van Harmelen V, Dharuri HK, AC’t Hoen P, Laros JF, et al. Roux-en-Y gastric bypass surgery, but not calorie restriction, reduces plasma branched-chain amino acids in obese women independent of weight loss or the presence of type 2 diabetes. Diabetes care. 2014;37:3150–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dharuri H, AC’t Hoen P, van Klinken JB, Henneman P, Laros JF, Lips MA, et al. Downregulation of the acetyl-CoA metabolic network in adipose tissue of obese diabetic individuals and recovery after weight loss. Diabetologia. 2014;57:2384–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lopes TI, Geloneze B, Pareja JC, Calixto AR, Ferreira MM, Marsaioli AJ. Blood metabolome changes before and after bariatric surgery: A 1H NMR-based clinical investigation. OMICS. 2015;19:318–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wijayatunga NN, Sams VG, Dawson JA, Mancini ML, Mancini GJ, Moustaid‐Moussa N. Roux‐en‐Y gastric bypass surgery alters serum metabolites and fatty acids in patients with morbid obesity. Diabetes Metab Res Rev. 2018;34:e3045.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab. 2007;293:E1552–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Juraschek SP, Shantha GP, Chu AY, Miller ER III, Guallar E, Hoogeveen RC, et al. Lactate and risk of incident diabetes in a case-cohort of the atherosclerosis risk in communities (ARIC) study. PloS One. 2013;8:e55113.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen YD, Varasteh BB, Reaven GM. Plasma lactate concentration in obesity and type 2 diabetes. Diabete Metab. 1993;19:348–54.

    CAS 
    PubMed 

    Google Scholar
     

  • Berggren JR, Boyle KE, Chapman WH, Houmard JA. Skeletal muscle lipid oxidation and obesity: influence of weight loss and exercise. Am J Physiol Endocrinol Metab. 2008;294:E726–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jones TE, Pories WJ, Houmard JA, Tanner CJ, Zheng D, Zou K, et al. Plasma lactate as a marker of metabolic health: Implications of elevated lactate for impairment of aerobic metabolism in the metabolic syndrome. Surgery. 2019;166:861–6.

    PubMed 
    Article 

    Google Scholar
     

  • Houmard JA, Pories WJ, Dohm GL. Is there a metabolic program in the skeletal muscle of obese individuals? J Obes. 2011;2011:250496.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fernández M, Zúñiga M. Amino acid catabolic pathways of lactic acid bacteria. Crit Rev Microbiol. 2006;32:155–83.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, et al. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front Microbiol. 2019;10:57.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Patrone V, Vajana E, Minuti A, Callegari ML, Federico A, Loguercio C, et al. Postoperative changes in fecal bacterial communities and fermentation products in obese patients undergoing bilio-intestinal bypass. Front Microbiol. 2016;7:200.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brinkworth GD, Noakes M, Clifton PM, Bird AR. Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. Br J Nutr. 2009;101:1493–502.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang L, Zhang J, Guo Z, Kwok L, Ma C, Zhang W, et al. Effect of oral consumption of probiotic Lactobacillus planatarum P-8 on fecal microbiota, SIgA, SCFAs, and TBAs of adults of different ages. Nutrition. 2014;30:776–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pérez-Burillo S, Pastoriza S, Gironés A, Avellaneda A, Francino MP, Rufián-Henares JA. Potential probiotic salami with dietary fiber modulates metabolism and gut microbiota in a human intervention study. J Functional Foods. 2020;66:103790.

    Article 
    CAS 

    Google Scholar
     

  • Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5:3611.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dehghan P, Farhangi MA, Nikniaz L, Nikniaz Z, Asghari‐Jafarabadi M. Gut microbiota‐derived metabolite trimethylamine N‐oxide (TMAO) potentially increases the risk of obesity in adults: an exploratory systematic review and dose‐response meta‐analysis. Obes Rev. 2020;21:e12993.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gruppen EG, Garcia E, Connelly MA, Jeyarajah EJ, Otvos JD, Bakker SJ, et al. TMAO is associated with mortality: impact of modestly impaired renal function. Sci Rep. 2017;7:13781.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Haghikia A, Li XS, Liman TG, Bledau N, Schmidt D, Zimmermann F, et al. Gut microbiota–dependent trimethylamine N-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler Thromb Vasc Biol. 2018;38:2225–35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Senthong V, Wang Z, Fan Y, Wu Y, Hazen SL, Tang WW. Trimethylamine N‐oxide and mortality risk in patients with peripheral artery disease. J Am Heart Assoc. 2016;5:e004237.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Din AU, Hassan A, Zhu Y, Yin T, Gregersen H, Wang G. Amelioration of TMAO through probiotics and its potential role in atherosclerosis. Appl Microbiol Biotechnol. 2019;103:9217–28.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kalani M, Hodjati H, Khanian MS, Doroudchi M. Lactobacillus acidophilus increases the anti-apoptotic micro RNA-21 and decreases the pro-inflammatory micro RNA-155 in the LPS-treated human endothelial cells. Probiotics Antimicrob Proteins. 2016;8:61–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles J. Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest. 1989;83:1168–73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Boden G. Obesity and free fatty acids. Endocrinol Metab Clin North Am. 2008;37:635–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta‐cell dysfunction. Eur J Clin Invest. 2002;32:14–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kullberg J, Sundbom M, Haenni A, Freden S, Johansson L, Börnert P, et al. Gastric bypass promotes more lipid mobilization than a similar weight loss induced by low-calorie diet. J Obes. 2011;2011:959601.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Jacobsen SH, Bojsen-Møller KN, Dirksen C, Jørgensen NB, Clausen TR, Wulff BS, et al. Effects of gastric bypass surgery on glucose absorption and metabolism during a mixed meal in glucose-tolerant individuals. Diabetologia. 2013;56:2250–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Klein S, Mittendorfer B, Eagon JC, Patterson B, Grant L, Feirt N, et al. Gastric bypass surgery improves metabolic and hepatic abnormalities associated with nonalcoholic fatty liver disease. Gastroenterology. 2006;130:1564–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hansen M, Lund MT, Gregers E, Kraunsøe R, Van Hall G, Helge JW, et al. Adipose tissue mitochondrial respiration and lipolysis before and after a weight loss by diet and RYGB. Obesity (Silver Spring). 2015;23:2022–9.

    CAS 
    Article 

    Google Scholar
     

  • Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. The Lancet. 1963;281:785–9.

    Article 

    Google Scholar
     

  • Lopes TI, Geloneze B, Pareja JC, Calixto AR, Ferreira MM, Marsaioli AJ. “Omics” prospective monitoring of bariatric surgery: Roux-en-Y gastric bypass outcomes using mixed-meal tolerance test and time-resolved 1H NMR-based metabolomics. OMICS. 2016;20:415–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim YA, Keogh JB, Clifton PM. Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutr Res Rev. 2018;31:35–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Products You May Like

    Leave a Reply

    Your email address will not be published. Required fields are marked *