Fecal and soil microbiota composition of gardening and non-gardening families

Clinical Trials & Research
  • 1.

    Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Sonnenburg, J. L. & Bäckhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Rook, G. A. Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to health. Proc. Natl. Acad. Sci. U.S.A. 110, 18360–18367 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Huang, Y. J. et al. The microbiome in allergic disease: Current understanding and future opportunities. J. Allergy Clin. Immunol. 139, 1099–1110 (2018).


    Google Scholar
     

  • 5.

    Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, 2 (2012).


    Google Scholar
     

  • 6.

    Schnabl, B. Linking intestinal homeostasis and liver disease. Curr. Opin. Gastroenterol. 29, 264–270 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Scott, F. W., Pound, L. D., Patrick, C., Eberhard, C. E. & Crookshank, J. A. Where genes meet environment—integrating the role of gut luminal contents, immunity and pancreas in type 1 diabetes. Transl. Res. 179, 183–198 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Rook, G. A. W. Hygiene hypothesis and autoimmune diseases. Clin. Rev. Allergy Immunol. 42, 5–15 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Deehan, E. C. & Walter, J. The fiber gap and the disappearing gut microbiome: implications for human nutrition. Trends Endocrinol. Metab. 27, 239–242 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Schloss, P. D., Iverson, K. D., Petrosino, J. F. & Schloss, S. J. The dynamics of a family’s gut microbiota reveal variations on a theme. Microbiome 2, 1–13 (2014).


    Google Scholar
     

  • 12.

    Song, S. J. et al. Cohabiting family members share microbiota with one another and with their dogs. ELife 2, 1–22 (2013).


    Google Scholar
     

  • 13.

    Seedorf, H. et al. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 159, 253–266 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Zhou, D. et al. Exposure to soil, house dust and decaying plants increases gut microbial diversity and decreases serum immunoglobulin E levels in BALB/c mice. Environ. Microbiol. 18, 1326–1337 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 2 (2014).


    Google Scholar
     

  • 16.

    Tasnim, N., Abulizi, N., Pither, J., Hart, M. M. & Gibson, D. L. Linking the gut microbial ecosystem with the environment: Does gut health depend on where we live?. Front. Microbiol. 8, 1–8 (2017).


    Google Scholar
     

  • 17.

    Schnorr, S. L. The soil in our microbial DNA informs about environmental interfaces across host and subsistence modalities: Soil taxa in human gut microbiome. Philos. Trans. R. Soc. B Biol. Sci. 375, 2 (2020).


    Google Scholar
     

  • 18.

    Rook, G. A. W. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: Darwinian medicine and the “hygiene” or “old friends” hypothesis. Clin. Exp. Immunol. 160, 70–79 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    de Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. 107, 14691–14696 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Martínez, I. et al. The gut microbiota of rural papua new guineans: Composition, diversity patterns, and ecological processes. Cell Rep. 11, 527–538 (2015).

    PubMed 

    Google Scholar
     

  • 21.

    Senghor, B., Sokhna, C., Ruimy, R. & Lagier, J. C. Gut microbiota diversity according to dietary habits and geographical provenance. Hum. Microbiome J. 7–8, 1–9 (2018).


    Google Scholar
     

  • 22.

    Holscher, H. D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8, 172–184 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    McDonald, D. et al. American gut: an open platform for citizen-science microbiome research. mSystems 3, 1–28 (2018).


    Google Scholar
     

  • 24.

    Mills, J. G. et al. Urban habitat restoration provides a human health benefit through microbiome rewilding: The Microbiome Rewilding Hypothesis. Restor. Ecol. 25, 866–872 (2017).


    Google Scholar
     

  • 25.

    Shenhav, L. et al. FEAST: Fast expectation-maximization for microbial source tracking. Nat. Methods 16, 627–632 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Dhillon, J., Li, Z. & Ortiz, R. M. Almond snacking for 8 wk increases alpha-diversity of the gastrointestinal microbiome and decreases bacteroides fragilis abundance compared with an isocaloric snack in college freshmen. Curr. Dev. Nutr. 3, 1–9 (2019).

    CAS 

    Google Scholar
     

  • 27.

    Thompson, S. V. et al. Avocado consumption alters gastrointestinal bacteria abundance and microbial metabolite concentrations among adults with overweight or obesity: A randomized controlled trial. J. Nutr. 151, 753–762 (2021).

    PubMed 

    Google Scholar
     

  • 28.

    Yu, D. et al. Long-term diet quality is associated with gut microbiome diversity and composition among urban Chinese adults. Am. J. Clin. Nutr. 113, 684–694 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Koh, A., de Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Chung, W. S. F. et al. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol. 14, 1–13 (2016).


    Google Scholar
     

  • 31.

    Kaczmarek, J. L. et al. Broccoli consumption affects the human gastrointestinal microbiota. J. Nutr. Biochem. 63, 27–34 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Rose, D. J., DeMeo, M. T. & Keshavarzian, A. Influence of dietary fiber on inflammatory bowel disease and colon cancer: Importance of fermentation pattern. Nutr. Rev. 65, 51–62 (2007).

    PubMed 

    Google Scholar
     

  • 33.

    Keohane, D. M. et al. Microbiome and health implications for ethnic minorities after enforced lifestyle changes. Nat. Med. 26, 1089–1095 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Ottman, N. et al. Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. J. Allergy Clin. Immunol. 143, 1198-1206.e12 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 37.

    Rook, G. A. W., Lowry, C. A. & Raison, C. L. Microbial, “Old Friends”, immunoregulation and stress resilience. Evol. Med. Public Heal. 2013, 46–64 (2013).


    Google Scholar
     

  • 38.

    Brame, J. E., Liddicoat, C., Abbott, C. A. & Breed, M. F. The potential of outdoor environments to supply beneficial butyrate-producing bacteria to humans. Sci. Total Environ. 777, 2 (2021).


    Google Scholar
     

  • 39.

    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Venable, E. B. et al. Effects of feeding management on the equine cecal microbiota. J. Equine Vet. Sci. 49, 113–121 (2017).


    Google Scholar
     

  • 41.

    Bolyen, E. et al. Reproducible, interactive, scalable, and extensible microbiome data science using QIIME2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Yilmaz, P. et al. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, 643–648 (2014).


    Google Scholar
     

  • 44.

    Subar, A. F. et al. The automated self-administered 24-hour dietary recall (ASA24): A resource for researchers, clinicians, and educators from the national cancer institute. J. Acad. Nutr. Diet 112, 1134–1137 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Miller, P. E. et al. Development and evaluation of a method for calculating the Healthy Eating Index-2005 using the Nutrition Data System for Research. Public Health Nutr. 14, 306–313 (2011).

    PubMed 

    Google Scholar
     

  • 46.

    Krebs-Smith, S. M. et al. Update of the healthy eating index: HEI-2015. J. Acad. Nutr. Diet 118, 1591–1602 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 48.

    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol 12, 2 (2011).


    Google Scholar
     

  • Products You May Like

    Leave a Reply

    Your email address will not be published. Required fields are marked *