Gut microbiota mediates the alleviative effect of polar lipids-enriched milk fat globule membrane on obesity-induced glucose metabolism disorders in peripheral tissues in rat dams

Clinical Trials & Research
  • 1.

    Howie GJ, Sloboda DM, Reynolds CM, Vickers MH. Timing of maternal exposure to a high fat diet and development of obesity and hyperinsulinemia in male rat offspring: same metabolic phenotype, different developmental pathways? J Nutr Metab. 2013;2013:517384.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Ruager-Martin R, Hyde MJ, Modi N. Maternal obesity and infant outcomes. Early Hum Dev. 2010;86:715–22.

    PubMed 

    Google Scholar
     

  • 3.

    Chu SY, Callaghan WM, Kim SY, Schmid CH, Lau J, England LJ, et al. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care. 2007;30:2070–6.

    PubMed 

    Google Scholar
     

  • 4.

    Gaillard R, Durmus B, Hofman A, Mackenbach JP, Steegers EA, Jaddoe VW. Risk factors and outcomes of maternal obesity and excessive weight gain during pregnancy. Obesity (Silver Spring). 2013;21:1046–55.


    Google Scholar
     

  • 5.

    Chang E, Hafner H, Varghese M, Griffin C, Clemente J, Islam M, et al. Programming effects of maternal and gestational obesity on offspring metabolism and metabolic inflammation. Sci Rep. 2019;9:16027.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Symonds ME, Mendez MA, Meltzer HM, Koletzko B, Godfrey K, Forsyth S, et al. Early life nutritional programming of obesity: mother–child cohort studies. Ann Nutr Metab. 2013;62:137–45.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Torloni MR, Betran AP, Horta BL, Nakamura MU, Atallah AN, Moron AF, et al. Prepregnancy BMI and the risk of gestational diabetes: a systematic review of the literature with meta-analysis. Obes Rev. 2009;10:194–203.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Herring SJ, Oken E. Obesity and diabetes in mothers and their children: can we stop the intergenerational cycle? Curr Diab Rep. 2011;11:20–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018;14:1483–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A. Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol. 2009;156:885–98.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Yan H, Yang W, Zhou F, Li X, Pan Q, Shen Z, et al. Estrogen improves insulin sensitivity and suppresses gluconeogenesis via the transcription factor Foxo1. Diabetes. 2019;68:291–304.

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Khamzina L, Veilleux A, Bergeron S, Marette A. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology. 2005;146:1473–81.

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Greiner T, Backhed F. Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol Metab. 2011;22:117–23.

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Mahizir D, Briffa JF, Wood JL, Anevska K, Hill-Yardin EL, Jefferies AJ, et al. Exercise improves metabolic function and alters the microbiome in rats with gestational diabetes. FASEB J. 2020;34:1728–44.

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Schneeberger M, Everard A, Gomez-Valades AG, Matamoros S, Ramirez S, Delzenne NM, et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. 2015;5:16643.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    de Clercq NC, Groen AK, Romijn JA, Nieuwdorp M. Gut microbiota in obesity and undernutrition. Adv Nutr. 2016;7:1080–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Dekker Nitert M, et al. Connections between the gut microbiome and metabolic hormones in early pregnancy in overweight and obese women. Diabetes. 2016;65:2214–23.

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Dewettinck K, Rombaut R, Thienpont N, Le TT, Messens K, Van, et al. Nutritional and technological aspects of milk fat globule membrane material. Int Dairy J. 2008;18:436–57.

    CAS 

    Google Scholar
     

  • 19.

    Li F, Wu SS, Berseth CL, Harris CL, Richards JD, Wampler JL, et al. Improved neurodevelopmental outcomes associated with bovine milk fat globule membrane and lactoferrin in infant formula: a randomized, controlled trial. J Pediatr. 2019;215:24–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Zhang D, Wen J, Zhou J, Cai W, Qian L. Milk fat globule membrane ameliorates necrotizing enterocolitis in neonatal rats and suppresses lipopolysaccharide-induced inflammatory response in IEC-6 enterocytes. JPEN J Parenter Enteral Nutr. 2019;43:863–73.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Timby N, Hernell O, Vaarala O, Melin M, Lonnerdal B, Domellof M. Infections in infants fed formula supplemented with bovine milk fat globule membranes. J Pediatr Gastroenterol Nutr. 2015;60:384–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Timby N, Lonnerdal B, Hernell O, Domellof M. Cardiovascular risk markers until 12 mo of age in infants fed a formula supplemented with bovine milk fat globule membranes. Pediatr Res. 2014;76:394–400.

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Millar CL, Jiang C, Norris GH, Garcia C, Seibel S, Anto L, et al. Cow’s milk polar lipids reduce atherogenic lipoprotein cholesterol, modulate gut microbiota and attenuate atherosclerosis development in LDL-receptor knockout mice fed a Western-type diet. J Nutr Biochem. 2020;79:108351.

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Li T, Gao J, Du M, Mao X. Milk fat globule membrane supplementation modulates the gut microbiota and attenuates metabolic endotoxemia in high-fat diet-fed mice. J Funct Foods. 2018;47:56–65.

    CAS 

    Google Scholar
     

  • 25.

    Gong H, Yuan Q, Pang J, Li T, Li J, Zhan B, et al. Dietary milk fat globule membrane restores decreased intestinal mucosal barrier development and alterations of intestinal flora in infant formula-fed rat pups. Mol Nutr Food Res. 2020;64:2000232.

  • 26.

    Yuan Q, Zhan B, Du M, Chang R, Li T, Mao X. Dietary milk fat globule membrane regulates JNK and PI3K/Akt pathway and ameliorates type 2 diabetes in mice induced by a high-fat diet and streptozotocin. J Funct Foods. 2019;60:103435.


    Google Scholar
     

  • 27.

    Li T, Gong H, Yuan Q, Du M, Ren F, Mao X. Supplementation of polar lipids-enriched milk fat globule membrane in high-fat diet-fed rats during pregnancy and lactation promotes brown/beige adipocyte development and prevents obesity in male offspring. FASEB J. 2020;34:4619–34.

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Hari S, Ochiai R, Shioya Y, Katsuragi Y. Safety evaluation of the consumption of high dose milk fat globule membrane in healthy adults: a double-blind, randomized controlled trial with parallel group design. Biosci Biotechnol Biochem. 2015;79:1172–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Pruessner JC, Kirschbaum C, Meinlschmid G, Hellhammer DH. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology. 2003;28:916–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Boden G. Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol. 2011;18:139–43.

    CAS 

    Google Scholar
     

  • 31.

    Beals E, Kamita SG, Sacchi R, Demmer E, Rivera N, Rogers-Soeder TS, et al. Addition of milk fat globule membrane-enriched supplement to a high-fat meal attenuates insulin secretion and induction of soluble epoxide hydrolase gene expression in the postprandial state in overweight and obese subjects. J Nutr Sci. 2019;8:e16.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Vors C, Joumard-Cubizolles L, Lecomte M, Combe E, Ouchchane L, Drai J, et al. Milk polar lipids reduce lipid cardiovascular risk factors in overweight postmenopausal women: towards a gut sphingomyelin-cholesterol interplay. Gut. 2020;69:487–501.

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Watanabe S, Takahashi T, Tanaka L, Haruta Y, Shiota M, Hosokawa M, et al. The effect of milk polar lipids separated from butter serum on the lipid levels in the liver and the plasma of obese-model mouse (KK-A). J Funct Foods. 2011;3:313–20.

    CAS 

    Google Scholar
     

  • 34.

    Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, Dore J, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004;54:1469–76.

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013;110:9066–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25:1096–103.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Santacruz A, Collado MC, Garcia-Valdes L, Segura MT, Martin-Lagos JA, Anjos T, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 2010;104:83–92.

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Liu D, Huang J, Luo Y, Wen B, Wu W, Zeng H, et al. Fuzhuan brick tea attenuates high-fat diet-induced obesity and associated metabolic disorders by shaping gut microbiota. J Agric Food Chem. 2019;67:13589–604.

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology. 2014;146:1513–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Sundekilde UK, Yde CC, Honore AH, Caverly Rae JM, Burns FR, Mukerji P, et al. An Integrated multi-omics analysis defines key pathway alterations in a diet-induced obesity mouse model. Metabolites. 2020;10:80.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 43.

    Thomaz FS, Tomsett KI, Panchal SK, Worrall S, Dekker Nitert M. Wasabi supplementation alters the composition of the gut microbiota of diet-induced obese rats. J Funct Foods. 2020;67:103868.

    CAS 

    Google Scholar
     

  • 44.

    Norris GH, Milard M, Michalski MC, Blesso CN. Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. J Nutr Biochem. 2019;73:108224.

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Gupta VR, Patel HK, Kostolansky SS, Ballivian RA, Eichberg J, Blanke SR. Sphingomyelin functions as a novel receptor for Helicobacter pylori VacA. PLoS Pathog. 2008;4:e1000073.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Li M, Yang X, Zhang G, Su D, Lei L, Li R. ANGPTL4 participates in gestational diabetes mellitus via regulating Akt pathway. Eur Rev Med Pharmaco. 2018;22:5056–62.

    CAS 

    Google Scholar
     

  • 47.

    Musial B, Vaughan OR, Fernandez-Twinn DS, Voshol P, Ozanne SE, Fowden AL, et al. A Western-style obesogenic diet alters maternal metabolic physiology with consequences for fetal nutrient acquisition in mice. J Physiol. 2017;595:4875–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Bonnaud S, Niaudet C, Legoux F, Corre I, Delpon G, Saulquin X, et al. Sphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis. Cancer Res. 2010;70:9905–15.

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Gomez-Munoz A, Kong JY, Parhar K, Wang SW, Gangoiti P, Gonzalez M, et al. Ceramide-1-phosphate promotes cell survival through activation of the phosphatidylinositol 3-kinase/protein kinase B pathway. FEBS Lett. 2005;579:3744–50.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Lappas M. GSK3beta is increased in adipose tissue and skeletal muscle from women with gestational diabetes where it regulates the inflammatory response. PLoS One. 2014;9:e115854.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Xu Y, Jin B, Sun L, Yang H, Cao X, Zhang G. The expression of FoxO1 in placenta and omental adipose tissue of gestational diabetes mellitus. Exp Clin Endocrinol Diabetes. 2014;122:287–94.

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Nguyen-Ngo C, Jayabalan N, Salomon C, Lappas M. Molecular pathways disrupted by gestational diabetes mellitus. J Mol Endocrinol. 2019;63:R51–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Musial B, Fernandez-Twinn DS, Duque-Guimaraes D, Carr SK, Fowden AL, Ozanne SE, et al. Exercise alters the molecular pathways of insulin signaling and lipid handling in maternal tissues of obese pregnant mice. Physiol Rep. 2019;7:e14202.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Hui H, Tang G, Go VL. Hypoglycemic herbs and their action mechanisms. Chin Med. 2009;4:11.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Janssen AW, Kersten S. The role of the gut microbiota in metabolic health. FASEB J. 2015;29:3111–23.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology. 2012;142:1100–1.

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829.

    PubMed 

    Google Scholar
     

  • 58.

    Zhang X, Wu Y, Ye H, Feng C, Han D, Tao S, et al. Dietary milk fat globule membrane supplementation during late gestation increased the growth of neonatal piglets by improving their plasma parameters, intestinal barriers, and fecal microbiota. RSC Advances. 2020;10:16987–98.

    CAS 

    Google Scholar
     

  • Products You May Like

    Leave a Reply

    Your email address will not be published. Required fields are marked *