Identification of G protein-coupled receptor 55 (GPR55) as a target of curcumin

Clinical Trials & Research
  • 1.

    Esatbeyoglu, T. et al. Curcumin-from molecule to biological function. Angew. Chem. Int Ed. 51, 5308–5332 (2012).

    CAS 

    Google Scholar
     

  • 2.

    Di Meo, F., Margarucci, S., Galderisi, U., Crispi, S. & Peluso, G. Curcumin, gut microbiota, and neuroprotection. Nutrients 11, 2426 (2019).

    PubMed Central 

    Google Scholar
     

  • 3.

    Priyadarsini, K. I. The chemistry of curcumin: from extraction to therapeutic agent. Molecules 19, 20091–20112 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Sharma, R. A., Gescher, A. J. & Steward, W. P. Curcumin: the story so far. Eur. J. Cancer 41, 1955–1968 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Sharma, R. A., Steward, W. P. & Gescher, A. J. Pharmacokinetics and pharmacodynamics of curcumin. Adv. Exp. Med. Biol. 595, 453–470 (2007).

    PubMed 

    Google Scholar
     

  • 6.

    Tsuda, T. Curcumin as a functional food-derived factor: degradation products, metabolites, bioactivity, and future perspectives. Food Funct. 9, 705–714 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Takikawa, M., Kurimoto, Y. & Tsuda, T. Curcumin stimulates glucagon-like peptide-1 secretion in GLUTag cells via Ca2+/calmodulin-dependent kinase II activation. Biochem. Biophys. Res. Commun. 435, 165–170 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Kato, M. et al. Curcumin improves glucose tolerance via stimulation of glucagon-like peptide-1 secretion. Mol. Nutr. Food Res. 61, https://doi.org/10.1002/mnfr.201600471 (2017).

  • 9.

    Alli-Oluwafuyi, A. M. et al. Curcumin induces secretion of glucagon-like peptide-1 through an oxidation-dependent mechanism. Biochimie 165, 250–257 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Venkatakrishnan, A. J. et al. Molecular signatures of G-protein-coupled receptors. Nature 494, 185–194 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Regard, J. B., Sato, I. T. & Coughlin, S. R. Anatomical profiling of G protein-coupled receptor expression. Cell 135, 561–571 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Luo, J. et al. Phytonutrient genistein is a survival factor for pancreatic beta-cells via GPR30-mediated mechanism. J. Nutr. Biochem. 58, 59–70 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Sánchez-Melgar, A. et al. The antioxidant resveratrol acts as a non-selective adenosine receptor agonist. Free Radic. Biol. Med. 135, 261–273 (2019).

    PubMed 

    Google Scholar
     

  • 14.

    Pi, M. et al. GPCR6A is a molecular target for the natural products gallate and EGCG in green tea. Mol. Nutr. Food Res. 62, e1700770 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Wettschureck, N. & Offermanns, S. Mammalian G proteins and their cell type specific functions. Physiol. Rev. 85, 1159–1204 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Rouse, M., Younes, A. & Egan, J. M. Resveratrol and curcumin enhance pancreatic beta-cell function by inhibiting phosphodiesterase activity. J. Endocrinol. 223, 107–117 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Rosenbaum, D. M., Rasmussen, S. G. & Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature 459, 356–363 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Griesser, M. et al. Autoxidative and cyclooxygenase-2 catalyzed transformation of the dietary chemopreventive agent curcumin. J. Biol. Chem. 286, 1114–1124 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Gordon, O. N., Luis, P. B., Sintim, H. O. & Schneider, C. Unraveling curcumin degradation: autoxidation proceeds through spiroepoxide and vinylether intermediates en route to the main bicyclopentadione. J. Biol. Chem. 290, 4817–4828 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Edwards, R. L. et al. The anti-inflammatory activity of curcumin is mediated by its oxidative metabolites. J. Biol. Chem. 292, 21243–21252 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Schneider, C., Gordon, O. N., Edwards, R. L. & Luis, P. B. Degradation of curcumin: from mechanism to biological implications. J. Agric. Food Chem. 63, 7606–7614 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Edwards, R. L. et al. Mechanistic differences in the inhibition of NF-κB by turmeric and Its curcuminoid constituents. J. Agric. Food Chem. 68, 6154–6160 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Harada, K. et al. Lysophosphatidylinositol-induced activation of the cation channel TRPV2 triggers glucagon-like peptide-1 secretion in enteroendocrine L cells. J. Biol. Chem. 292, 10855–10864 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Oka, S., Nakajima, K., Yamashita, A., Kishimoto, S. & Sugiura, T. Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem. Biophys. Res. Commun. 362, 928–934 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Shore, D. M. & Reggio, P. H. The therapeutic potential of orphan GPCRs, GPR35 and GPR55. Front. Pharmacol. 6, 69 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Ryberg, E. et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Brit. J. Pharmacol. 152, 1092–1101 (2007).

    CAS 

    Google Scholar
     

  • 27.

    Sylantyev, S., Jensen, T. P., Ross, R. A. & Rusakov, D. A. Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc. Natl Acad. Sci. USA 110, 5193–5198 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Zhang, Z. et al. Curcumin modulates cannabinoid receptors in liver fibrosis in vivo and inhibits extracellular matrix expression in hepatic stellate cells by suppressing cannabinoid receptor type-1 in vitro. Eur. J. Pharmacol. 721, 133–140 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Sharir, H. & Abood, M. E. Pharmacological characterization of GPR55, a putative cannabinoid receptor. Pharm. Ther. 126, 301–313 (2010).

    CAS 

    Google Scholar
     

  • 30.

    Lingerfelt, M. A. et al. Identification of crucial amino acid residues involved in agonist signaling at the GPR55 receptor. Biochemistry 56, 473–486 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Cheng, A. L. et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 21, 2895–2900 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Pan, M. H., Huang, T. M. & Lin, J. K. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab. Dispos. 27, 486–494 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Scazzocchio, B., Minghetti, L. & D’Archivio, M. Interaction between gut microbiota and curcumin: a new key of understanding for the health effects of curcumin. Nutrients 12, 2499 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • 34.

    Nelson, K. M. et al. The essential medicinal chemistry of curcumin. J. Med. Chem. 60, 1620–1637 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Chuengsamarn, S., Rattanamongkolgul, S., Luechapudiporn, R., Phisalaphong, C. & Jirawatnotai, S. Curcumin extract for prevention of type 2 diabetes. Diabetes care 35, 2121–2127 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Tuduri, E., Lopez, M., Dieguez, C., Nadal, A. & Nogueiras, R. GPR55 and the regulation of glucose homeostasis. Int. J. Biochem. Cell Biol. 88, 204–207 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Lipina, C. et al. GPR55 deficiency is associated with increased adiposity and impaired insulin signaling in peripheral metabolic tissues. FASEB J. 33, 1299–1312 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Thul, P. J. & Lindskog, C. The human protein atlas: a spatial map of the human proteome. Protein Sci. 27, 233–244 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Bartik, L. et al. Curcumin: a novel nutritionally derived ligand of the vitamin D receptor with implications for colon cancer chemoprevention. J. Nutr. Biochem. 21, 1153–1161 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Joseph, A. I. et al. Stability and anti-inflammatory activity of the reduction-resistant curcumin analog, 2,6-dimethyl-curcumin. Org. Biomol. Chem. 16, 3273–3281 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Drucker, D. J., Jin, T., Asa, S. L., Young, T. A. & Brubaker, P. L. Activation of proglucagon gene transcription by protein kinase-A in a novel mouse enteroendocrine cell line. Mol. Endocrinol. 8, 1646–1655 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Thonberg, H., Fredriksson, J. M., Nedergaard, J. & Cannon, B. A novel pathway for adrenergic stimulation of cAMP-response-element-binding protein (CREB) phosphorylation: mediation via alpha1-adrenoceptors and protein kinase C activation. Biochem. J. 364, 73–79 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Horiuchi, H. et al. S-Equol enantioselectively activates cAMP-protein kinase A signaling and reduces alloxan-induced cell death in INS-1 pancreatic beta-cells. J. Nutr. Sci. Vitaminol. 60, 291–296 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Goto, T. et al. Synergistic activation of the serum response element-dependent pathway by hepatitis B virus x protein and large-isoform hepatitis delta antigen. J. Infect. Dis. 187, 820–828 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Ishikawa, T., Igarashi, T., Hata, K. & Fujita, T. c-fos induction by heat, arsenite, and cadmium is mediated by a heat shock element in its promoter. Biochem. Biophys. Res. Commun. 254, 566–571 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Moilanen, A. M. et al. Identification of a novel RING finger protein as a coregulator in steroid receptor-mediated gene transcription. Mol. Cell. Biol. 18, 5128–5139 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Wu, L., Rosser, D. S., Schmidt, M. C. & Berk, A. A TATA box implicated in E1A transcriptional activation of a simple adenovirus 2 promoter. Nature 326, 512–515 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Westwick, J. K. et al. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol. Cell. Biol. 17, 1324–1335 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Hill, C. S., Wynne, J. & Treisman, R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81, 1159–1170 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Ichida, M. & Finkel, T. Ras regulates NFAT3 activity in cardiac myocytes. J. Biol. Chem. 276, 3524–3530 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Goshima, N. et al. Human protein factory for converting the transcriptome into an in vitro-expressed proteome. Nat. Methods 5, 1011–1017 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Baker, A. et al. Polyethylenimine (PEI) is a simple, inexpensive and effective reagent for condensing and linking plasmid DNA to adenovirus for gene delivery. Gene Ther. 4, 773–782 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Harada, N. et al. Glyceraldehyde-3-phosphate dehydrogenase enhances transcriptional activity of androgen receptor in prostate cancer cells. J. Biol. Chem. 282, 22651–22661 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Fenalti, G. et al. Molecular control of delta-opioid receptor signalling. Nature 506, 191–196 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Sterling, T. & Irwin, J. J. ZINC 15-ligand discovery for everyone. J. Chem. Inform. Model. 55, 2324–2337 (2015).

    CAS 

    Google Scholar
     

  • 56.

    Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Agostino, M., Mancera, R. L., Ramsland, P. A. & Yuriev, E. AutoMap: a tool for analyzing protein-ligand recognition using multiple ligand binding modes. J. Mol. Graph. Model. 40, 80–90 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Products You May Like

    Leave a Reply

    Your email address will not be published. Required fields are marked *