Tracing global flows of bioactive compounds from farm to fork in nutrient balance sheets can help guide intervention towards healthier food supplies

Clinical Trials & Research
  • FAO, IFAD, UNICEF, WFP and WHO. The State of Food Security and Nutrition in the World 2020. Transforming Food Systems For Affordable Healthy Diets (FAO, 2020).

  • FAO. Food balance sheets: a handbook. FAO http://www.fao.org/3/X9892E/X9892E00.htm (2001).

  • Thar, C.-M. et al. A review of the uses and reliability of food balance sheets in health research. Nutr. Rev. 78, 989–1000 (2020).

    PubMed 

    Google Scholar
     

  • Arsenault, J. E., Hijmans, R. J. & Brown, K. H. Improving nutrition security through agriculture: an analytical framework based on national food balance sheets to estimate nutritional adequacy of food supplies. Food Secur. 7, 693–707 (2015).


    Google Scholar
     

  • Broadley, M. R. et al. Dietary requirements for magnesium, but not calcium, are likely to be met in Malawi based on national food supply data. Int. J. Vitam. Nutr. Res. 82, 192–199 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Chilimba, A. D. et al. Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi. Sci. Rep. 1, 72 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibson, R. S. & Cavalli-Sforza, T. Using reference nutrient density goals with food balance sheet data to identify likely micronutrient deficits for fortification planning in countries in the Western Pacific region. Food Nutr. Bull. 33, S214–S220 (2012).

    PubMed 

    Google Scholar
     

  • Joy, E. J. M. et al. Risk of dietary magnesium deficiency is low in most African countries based on food supply data. Plant Soil 368, 129–137 (2013).

    CAS 

    Google Scholar
     

  • Joy, E. J. M. et al. Dietary mineral supplies in Africa. Physiol. Plant. 151, 208–229 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumssa, D. B. et al. Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Sci. Rep. 5, 10974 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumssa, D. B. et al. Global magnesium supply in the food chain. Crop Pasture Sci. 66, 1278–1289 (2016).


    Google Scholar
     

  • Mark, H. E. et al. Estimating dietary micronutrient supply and the prevalence of inadequate intakes from national food balance sheets in the South Asia region. Asia Pac. J. Clin. Nutr. 25, 368–376 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Schaafsma, T. et al. Africa’s oesophageal cancer corridor: geographic variations in incidence correlate with certain micronutrient deficiencies. PLoS ONE 10, e0140107 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheehy, T. & Sharma, S. The nutrition transition in the Republic of Ireland: trends in energy and nutrient supply from 1961 to 2007 using Food and Agriculture Organization food balance sheets. Br. J. Nutr. 106, 1078–1089 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Tennant, D. R. et al. Phytonutrient intakes in relation to European fruit and vegetable consumption patterns observed in different food surveys. Br. J. Nutr. 112, 1214–1225 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wessells, K. R. & Brown, K. H. Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 7, e50568 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wessells, K. R., Singh, G. M. & Brown, K. H. Estimating the global prevalence of inadequate zinc intake from national food balance sheets: effects of methodological assumptions. PLoS ONE 7, e50565 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wuehler, S. E., Peerson, J. M. & Brown, K. H. Use of national food balance data to estimate the adequacy of zinc in national food supplies: methodology and regional estimates. Public Health Nutr. 8, 812–819 (2005).

    PubMed 

    Google Scholar
     

  • Smith, M. R. et al. Global Expanded Nutrient Supply (GENuS) model: a new method for estimating the global dietary supply of nutrients. PLoS ONE 11, e0146976 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beal, T. Y. et al. Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PLoS ONE 12, e0175554 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidhuber, J. et al. The Global Nutrient Database: availability of macronutrients and micronutrients in 195 countries from 1980 to 2013. Lancet Planet. Health 2, e353–e368 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 393, 1958–1972 (2019).


    Google Scholar
     

  • Khatibzadeh, S. et al. A global database of food and nutrient consumption. Bull. World Health Organ. 94, 931–934 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, V. et al. Global Dietary Database 2017: data availability and gaps on 54 major foods, beverages and nutrients among 5.6 million children and adults from 1220 surveys worldwide. BMJ Glob. Health 6, e003585 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritchie, H., Reay, D. S. & Higgins, P. Beyond calories: a holistic assessment of the global food system. Front. Sustain. Food Syst. 2, 57 (2018).


    Google Scholar
     

  • Ritchie, H., Reay, D. S. & Higgins, P. Quantifying, projecting, and addressing India’s hidden hunger. Front. Sustain. Food Syst. 2, 11 (2018).


    Google Scholar
     

  • Ritchie, H., Reay, D. & Higgins, P. Sustainable food security in India—domestic production and macronutrient availability. PLoS ONE 13, e0193766 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wood, S. A. et al. Trade and the equitability of global food nutrient distribution. Nat. Sustain. 1, 34–37 (2018).


    Google Scholar
     

  • Smith, N. W. et al. Use of the DELTA model to understand the food system and global nutrition. J. Nutr. 151, 3253–3261 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geyik, O., Hadjikakou, M. & Bryan, B. A. Spatiotemporal trends in adequacy of dietary nutrient production and food sources. Glob. Food Secur. 24, 100355 (2020).


    Google Scholar
     

  • Geyik, O. et al. Does global food trade close the dietary nutrient gap for the world’s poorest nations? Glob. Food Secur. 28, 100490 (2021).


    Google Scholar
     

  • Del Gobbo, L. C. et al. Assessing global dietary habits: a comparison of national estimates from the FAO and the Global Dietary Database. Am. J. Clin. Nutr. 101, 1038–1046 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vos, T. et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).


    Google Scholar
     

  • Rickard, A. P. et al. An algorithm to assess intestinal iron availability for use in dietary surveys. Br. J. Nutr. 102, 1678–1685 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hambidge, K. M. et al. Zinc bioavailability and homeostasis. Am. J. Clin. Nutr. 91, 1478S–1483S (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chepeliev, M. Incorporating nutritional accounts to the GTAP Data Base. J. Glob. Econ. Anal. 7, 1–43 (2022).


    Google Scholar
     

  • Sun, L., Kwak, S. & Jin, Y.-S. Vitamin A production by engineered Saccharomyces cerevisiae from xylose via two-phase in situ extraction. ACS Synth. Biol. 8, 2131–2140 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Loots, Du. T., Lieshout, M. V. & Lachmann, G. Sodium iron (III) ethylenediaminetetraacetic acid synthesis to reduce iron deficiency globally. Eur. J. Clin. Nutr. 61, 287–289 (2007).

    CAS 

    Google Scholar
     

  • Kołodziejczak-Radzimska, A. & Jesionowski, T. Zinc oxide—from synthesis to application: a review. Materials 7, 2833–2881 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vitamin Angels. How to give vitamin A to children 6–59 months. Vitamin Angels https://www.vitaminangels.org/assets/content/uploads/OneSheetVASChildrenINTL_ENG_20170308.pdf (2021).

  • Bell, W., Lividini, K. & Masters, W. A. Global dietary convergence from 1970 to 2010 altered inequality in agriculture, nutrition and health. Nat. Food 2, 156–165 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fanzo, J. & Davis, C. Can diets be healthy, sustainable, and equitable? Curr. Obes. Rep. 8, 495–503 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finaret, A. B. & Masters, W. A. Beyond calories: the new economics of nutrition. Annu. Rev. Resour. Econ. 11, 237–259 (2019).


    Google Scholar
     

  • Neumann, C., Harris, D. M. & Rogers, L. M. Contribution of animal source foods in improving diet quality and function in children in the developing world. Nutr. Res. 22, 193–220 (2002).

    CAS 

    Google Scholar
     

  • Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    PubMed 

    Google Scholar
     

  • Adesogan, A. T. et al. Animal source foods: sustainability problem or malnutrition and sustainability solution? Perspective matters. Glob. Food Secur. 25, 100325 (2020).


    Google Scholar
     

  • Bouis, H. E., Saltzman, A. & Birol, E. in Agriculture for Improved Nutrition: Seizing the Momentum (eds Fan S. et al.) 47–57 (CABI, 2019).

  • Neidecker-Gonzales, O., Nestel, P. & Bouis, H. Estimating the global costs of vitamin A capsule supplementation: a review of the literature. Food Nutr. Bull. 28, 307–316 (2007).

    PubMed 

    Google Scholar
     

  • UNICEF. Coverage at a crossroads: new directions for vitamin A supplementation programmes. UNICEF https://data.unicef.org/resources/vitamin-a-coverage/ (2018).

  • UNICEF. Vitamin A deficiency. UNICEF https://data.unicef.org/topic/nutrition/vitamin-a-deficiency/ (2021).

  • Mkambula, P. et al. The unfinished agenda for food fortification in low-and middle-income countries: quantifying progress, gaps and potential opportunities. Nutrients 12, 354 (2020).

    PubMed Central 

    Google Scholar
     

  • Meijaard, E. et al. The environmental impacts of palm oil in context. Nat. Plants 6, 1418–1426 (2020).

    PubMed 

    Google Scholar
     

  • Otero, G. et al. The neoliberal diet and inequality in the United States. Soc. Sci. Med. 142, 47–55 (2015).

    PubMed 

    Google Scholar
     

  • Popkin, B. M. in Emerging Societies—Coexistence of Childhood Malnutrition and Obesity Vol. 63 (ed. Kalhan, S. C.) 1–14 (Karger, 2009).

  • Haddad, L. et al. Food Systems and Diets: Facing the Challenges of the 21st Century 2–134 (Global Panel on Agriculture and Food Systems for Nutrition, 2016).

  • Gashu, D. et al. The nutritional quality of cereals varies geospatially in Ethiopia and Malawi. Nature 594, 71–76 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction (FAO, 2019).

  • United Nations Environment Programme. Food Waste Index Report 2021 (UNEP, 2021).

  • Global Food Losses and Food WasteExtent, Causes and Prevention (FAO, 2011).

  • Food loss and waste database. FAO www.fao.org/platform-food-loss-waste/flw-data/en/ (2021).

  • Fiedler, J. L. & Lividini, K. Monitoring population diet quality and nutrition status with household consumption and expenditure surveys: suggestions for a Bangladesh baseline. Food Sec. 9, 63–88 (2017).


    Google Scholar
     

  • Joy, E. J. M. et al. Dietary mineral supplies in Malawi: spatial and socioeconomic assessment. BMC Nutr. 1, 1–25 (2015).


    Google Scholar
     

  • Willett, W. in Nutritional Epidemiology (eds Hofman, A. et al.) 34–48 (Oxford Univ. Press, 2012).

  • Beal, T. Y. et al. Differences in modelled estimates of global dietary intake. Lancet 397, 1708–1709 (2021).

    PubMed 

    Google Scholar
     

  • US Department of Agriculture (USDA), Agricultural Research Service, Nutrient Data Laboratory. Food data central download data. USDA https://fdc.nal.usda.gov/ (2018).

  • FAO/IZiNCG. FAO/INFOODS/IZiNCG Global Food Composition Database for Phytate Version 1.0 – PhyFoodComp 1.0 (FAO, 2018).

  • Hallberg, L. & Hulthén, L. Prediction of dietary iron absorption: an algorithm for calculating absorption and bioavailability of dietary iron. Am. J. Clin. Nutr. 71, 1147–1160 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • FAOSTAT. Data: food balance (FAO, 2021); http://www.fao.org/faostat/en/#data

  • UN DESA (United Nations Department of Economic and Social Affairs): world population prospects 2019 (UN, 2019); https://population.un.org/wpp/

  • Data: World Bank country and lending groups (The World Bank, 2021); https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups

  • Data: The World Bank Atlas method—detailed methodology (The World Bank, 2021); https://datahelpdesk.worldbank.org/knowledgebase/articles/378832-what-is-the-world-bank-atlas-method

  • FAOSTAT. Data: supply utilization accounts (FAO, 2021); http://www.fao.org/faostat/en/#data

  • Economic statistics: introduction to CPC (UNSD, 2021); https://unstats.un.org/unsd/classifications/Econ/cpc

  • Central product classification (CPC) version 2.1 (UNSD, 2015); https://unstats.un.org/unsd/classifications/unsdclassifications/cpcv21.pdf

  • Central product classification (CPC) version 2.1 (UNSD, 2018); https://unstats.un.org/unsd/classifications/unsdclassifications/COICOP_2018_-_pre-edited_white_cover_version_-_2018-12-26.pdf

  • FANTA. Minimum dietary diversity for women: a guide for measurement. FAO https://www.fao.org/3/i5486e/i5486e.pdf (2016).

  • Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (National Academy of Medicine, 2001).

  • FAOSTAT (FAO, 2021); http://www.fao.org/faostat/en/#definitions

  • Handbook of fishery statistical standards. FAO/CWP http://www.fao.org/cwp-on-fishery-statistics/publications/otherdocuments/en/ (2004).

  • FishStatJ—software for fishery and aquaculture statistical time series (FAO, 2019); http://www.fao.org/fishery/statistics/software/fishstatj/en

  • Vincent, A. et al. FAO/INFOODS Food Composition Table for Western Africa (2019) User Guide & Condensed Food Composition Table (FAO, 2019).

  • OSU Extended Campus. CSS 330 world food crops: unit 16—cassava, sweetpotato, and yams (Oregon State Univ., 2021); https://oregonstate.edu/instruct/css/330/eight/Unit16Notes.htm

  • Gold, I. L. et al. in Palm Oil Ch. 10, 275–298 (AOCS Press, 2012).

  • Nutrient Data Laboratory. USDA national nutrient database for standard reference, release 28 (slightly revised). USDA http://www.ars.usda.gov/nea/bhnrc/mafcl (2016).

  • Weights, measures and conversion factors for agricultural commodities and their products. USDA https://www.ers.usda.gov/publications/pub-details/?pubid=41881 (1992).

  • Handbook of fishery statistics. FAO/CWP http://www.fao.org/cwp-on-fishery-statistics/publications/otherdocuments/en/ (1992).

  • Finnie, S. & Atwell, W. A. Wheat Flour 2nd edn (Am. Assoc. Cereal Chem., 2016).

  • Fiedler, J. L. et al. Maize flour fortification in Africa: markets, feasibility, coverage, and costs. Ann. N.Y. Acad. Sci. 1312, 26–39 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kajuna, S. Millet: Post-harvest Operations (eds D. Mejia & B. Lewis) (FAO, 2001).

  • The coffee guide: trade practices of relevance to exporters in coffee-producing countries (Int. Trade Centre, 2019); http://www.thecoffeeguide.org/coffee-guide/world-coffee-trade/conversions-and-statistics/

  • How much per cup: use this coffee to water ratio for perfect coffee (Coffeestylish, 2019); https://coffeestylish.com/how-much-coffee/

  • Tea 101: how to measure loose leaf tea for brewing (Teatulia, 2019); https://www.teatulia.com/tea-101/how-to-measure-loose-leaf-tea-for-brewing.htm

  • Fairtrade standard for cocoa: explanatory note (Fairtrade Am. 2019); http://fairtradeamerica.org/resources%20library/standards/cocoa%20standards

  • Global Food Losses and Food WasteExtent, Causes and Prevention (FAO, 2011)

  • Gustafsson, J. et al. The methodology of the FAO study: global food losses and food waste—extent, causes and prevention—FAO, 2011. SIK 57, 1–70 (2013).


    Google Scholar
     

  • Nutrient Data Lab (2017). USDA table of nutrient retention factors, release 6. USDA Agric. Res. Serv. https://doi.org/10.15482/USDA.ADC/1409034 (2007).

  • Armah, S. M. et al. A complete diet-based algorithm for predicting nonheme iron absorption in adults. J. Nutr. 143, 1136–1140 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Hunt, J. R. Dietary and physiological factors that affect the absorption and bioavailability of iron. Int. J. Vitam. Nutr. Res. 75, 375–384 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Tseng, M. et al. Adjustment of iron intake for dietary enhancers and inhibitors in population studies: bioavailable iron in rural and urban residing Russian women and children. J. Nutr. 127, 1456–1468 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Conway, R. E., Powell, J. J. & Geissler, C. A. A food-group based algorithm to predict non-heme iron absorption. Int. J. Food Sci. Nutr. 58, 29–41 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Miller, L. V., Krebs, N. F. & Hambidge, K. Michael A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. J. Nutr. 137, 135–141 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Estimating the number of pregnant women in a geographic area. CDC https://www.cdc.gov/reproductivehealth/emergency/pdfs/PregnacyEstimatoBrochure508.pdf (2016).

  • Singh, S. et al. Abortion worldwide 2017: uneven progress and unequal access. Guttmacher Inst. https://clacaidigital.info/bitstream/handle/123456789/1114/Abortion%20worldwide%202017.pdf?sequence=5&isAllowed=y (2018).

  • Sedgh, G., Singh, S. & Hussain, R. Intended and unintended pregnancies worldwide in 2012 and recent trends. Stud. Fam. Plann. 45, 301–314 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boss, M., Gardner, H., & Hartmann, P. Normal human lactation: closing the gap. F1000Research https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013763/pdf/f1000research-7-15731.pdf (2018).

  • Dietary Reference Values for Nutrients Summary Report 14 (EFSA, 2017); www.efsa.europa.eu/sites/default/files/2017_09_DRVs_summary_report.pdf

  • Download data Glob. Diet. Database https://www.globaldietarydatabase.org/data-download (2021).

  • UIA world country boundaries (ArcGIS, 2021); https://hub.arcgis.com/datasets/UIA::uia-world-countries-boundaries/about

  • Fiedler, J. L. et al. Identifying Zambia’s industrial fortification options: toward overcoming the food and nutrition information gap-induced impasse. Food Nutr. Bull. 34, 480–500 (2013).

    PubMed 

    Google Scholar
     

  • EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for zinc. EFSA J. 12, 3844 (2014).

  • Products You May Like

    Leave a Reply

    Your email address will not be published. Required fields are marked *